imputer =================================================================== .. py:module:: evalml.pipelines.components.transformers.imputers.imputer .. autoapi-nested-parse:: Component that imputes missing data according to a specified imputation strategy. Module Contents --------------- Classes Summary ~~~~~~~~~~~~~~~ .. autoapisummary:: evalml.pipelines.components.transformers.imputers.imputer.Imputer Contents ~~~~~~~~~~~~~~~~~~~ .. py:class:: Imputer(categorical_impute_strategy='most_frequent', categorical_fill_value=None, numeric_impute_strategy='mean', numeric_fill_value=None, boolean_impute_strategy='most_frequent', boolean_fill_value=None, random_seed=0, **kwargs) Imputes missing data according to a specified imputation strategy. :param categorical_impute_strategy: Impute strategy to use for string, object, boolean, categorical dtypes. Valid values include "most_frequent" and "constant". :type categorical_impute_strategy: string :param numeric_impute_strategy: Impute strategy to use for numeric columns. Valid values include "mean", "median", "most_frequent", and "constant". :type numeric_impute_strategy: string :param boolean_impute_strategy: Impute strategy to use for boolean columns. Valid values include "most_frequent" and "constant". :type boolean_impute_strategy: string :param categorical_fill_value: When categorical_impute_strategy == "constant", fill_value is used to replace missing data. The default value of None will fill with the string "missing_value". :type categorical_fill_value: string :param numeric_fill_value: When numeric_impute_strategy == "constant", fill_value is used to replace missing data. The default value of None will fill with 0. :type numeric_fill_value: int, float :param boolean_fill_value: When boolean_impute_strategy == "constant", fill_value is used to replace missing data. The default value of None will fill with True. :type boolean_fill_value: bool :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - { "categorical_impute_strategy": ["most_frequent"], "numeric_impute_strategy": ["mean", "median", "most_frequent", "knn"], "boolean_impute_strategy": ["most_frequent"]} * - **modifies_features** - True * - **modifies_target** - False * - **name** - Imputer * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.transformers.imputers.imputer.Imputer.clone evalml.pipelines.components.transformers.imputers.imputer.Imputer.default_parameters evalml.pipelines.components.transformers.imputers.imputer.Imputer.describe evalml.pipelines.components.transformers.imputers.imputer.Imputer.fit evalml.pipelines.components.transformers.imputers.imputer.Imputer.fit_transform evalml.pipelines.components.transformers.imputers.imputer.Imputer.load evalml.pipelines.components.transformers.imputers.imputer.Imputer.needs_fitting evalml.pipelines.components.transformers.imputers.imputer.Imputer.parameters evalml.pipelines.components.transformers.imputers.imputer.Imputer.save evalml.pipelines.components.transformers.imputers.imputer.Imputer.transform evalml.pipelines.components.transformers.imputers.imputer.Imputer.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: fit(self, X, y=None) Fits imputer to data. 'None' values are converted to np.nan before imputation and are treated as the same. :param X: The input training data of shape [n_samples, n_features] :type X: pd.DataFrame, np.ndarray :param y: The target training data of length [n_samples] :type y: pd.Series, optional :returns: self .. py:method:: fit_transform(self, X, y=None) Fits on X and transforms X. :param X: Data to fit and transform. :type X: pd.DataFrame :param y: Target data. :type y: pd.Series :returns: Transformed X. :rtype: pd.DataFrame :raises MethodPropertyNotFoundError: If transformer does not have a transform method or a component_obj that implements transform. .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: transform(self, X, y=None) Transforms data X by imputing missing values. :param X: Data to transform :type X: pd.DataFrame :param y: Ignored. :type y: pd.Series, optional :returns: Transformed X :rtype: pd.DataFrame .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional