Source code for evalml.data_checks.id_columns_data_check

"""Data check that checks if any of the features are likely to be ID columns."""
from evalml.data_checks import (
    DataCheck,
    DataCheckActionCode,
    DataCheckActionOption,
    DataCheckMessageCode,
    DataCheckWarning,
)
from evalml.utils import infer_feature_types


[docs]class IDColumnsDataCheck(DataCheck): """Check if any of the features are likely to be ID columns. Args: id_threshold (float): The probability threshold to be considered an ID column. Defaults to 1.0. exclude_time_index (bool): If True, the column set as the time index will not be included in the data check. Default is True. """ def __init__(self, id_threshold=1.0, exclude_time_index=True): if id_threshold < 0 or id_threshold > 1: raise ValueError("id_threshold must be a float between 0 and 1, inclusive.") self.id_threshold = id_threshold self.exclude_time_index = exclude_time_index
[docs] def validate(self, X, y=None): """Check if any of the features are likely to be ID columns. Currently performs a number of simple checks. Checks performed are: - column name is "id" - column name ends in "_id" - column contains all unique values (and is categorical / integer type) Args: X (pd.DataFrame, np.ndarray): The input features to check. y (pd.Series): The target. Defaults to None. Ignored. Returns: dict: A dictionary of features with column name or index and their probability of being ID columns Examples: >>> import pandas as pd Columns that end in "_id" and are completely unique are likely to be ID columns. >>> df = pd.DataFrame({ ... "profits": [25, 15, 15, 31, 19], ... "customer_id": [123, 124, 125, 126, 127], ... "Sales": [10, 42, 31, 51, 61] ... }) ... >>> id_col_check = IDColumnsDataCheck() >>> assert id_col_check.validate(df) == [ ... { ... "message": "Columns 'customer_id' are 100.0% or more likely to be an ID column", ... "data_check_name": "IDColumnsDataCheck", ... "level": "warning", ... "code": "HAS_ID_COLUMN", ... "details": {"columns": ["customer_id"], "rows": None}, ... "action_options": [ ... { ... "code": "DROP_COL", ... "data_check_name": "IDColumnsDataCheck", ... "parameters": {}, ... "metadata": {"columns": ["customer_id"], "rows": None} ... } ... ] ... } ... ] Columns named "ID" with all unique values will also be identified as ID columns. >>> df = df.rename(columns={"customer_id": "ID"}) >>> id_col_check = IDColumnsDataCheck() >>> assert id_col_check.validate(df) == [ ... { ... "message": "Columns 'ID' are 100.0% or more likely to be an ID column", ... "data_check_name": "IDColumnsDataCheck", ... "level": "warning", ... "code": "HAS_ID_COLUMN", ... "details": {"columns": ["ID"], "rows": None}, ... "action_options": [ ... { ... "code": "DROP_COL", ... "data_check_name": "IDColumnsDataCheck", ... "parameters": {}, ... "metadata": {"columns": ["ID"], "rows": None} ... } ... ] ... } ... ] Despite being all unique, "Country_Rank" will not be identified as an ID column as id_threshold is set to 1.0 by default and its name doesn't indicate that it's an ID. >>> df = pd.DataFrame({ ... "humidity": ["high", "very high", "low", "low", "high"], ... "Country_Rank": [1, 2, 3, 4, 5], ... "Sales": ["very high", "high", "high", "medium", "very low"] ... }) ... >>> id_col_check = IDColumnsDataCheck() >>> assert id_col_check.validate(df) == [] However lowering the threshold will cause this column to be identified as an ID. >>> id_col_check = IDColumnsDataCheck() >>> id_col_check = IDColumnsDataCheck(id_threshold=0.95) >>> assert id_col_check.validate(df) == [ ... { ... "message": "Columns 'Country_Rank' are 95.0% or more likely to be an ID column", ... "data_check_name": "IDColumnsDataCheck", ... "level": "warning", ... "details": {"columns": ["Country_Rank"], "rows": None}, ... "code": "HAS_ID_COLUMN", ... "action_options": [ ... { ... "code": "DROP_COL", ... "data_check_name": "IDColumnsDataCheck", ... "parameters": {}, ... "metadata": {"columns": ["Country_Rank"], "rows": None} ... } ... ] ... } ... ] If the first column of the dataframe has all unique values and is named either 'ID' or a name that ends with '_id', it is probably the primary key. The other ID columns should be dropped. >>> df = pd.DataFrame({ ... "sales_id": [0, 1, 2, 3, 4], ... "customer_id": [123, 124, 125, 126, 127], ... "Sales": [10, 42, 31, 51, 61] ... }) ... >>> id_col_check = IDColumnsDataCheck() >>> assert id_col_check.validate(df) == [ ... { ... "message": "The first column 'sales_id' is likely to be the primary key", ... "data_check_name": "IDColumnsDataCheck", ... "level": "warning", ... "code": "HAS_ID_FIRST_COLUMN", ... "details": {"columns": ["sales_id"], "rows": None}, ... "action_options": [ ... { ... "code": "SET_FIRST_COL_ID", ... "data_check_name": "IDColumnsDataCheck", ... "parameters": {}, ... "metadata": {"columns": ["sales_id"], "rows": None} ... } ... ] ... }, ... { ... "message": "Columns 'customer_id' are 100.0% or more likely to be an ID column", ... "data_check_name": "IDColumnsDataCheck", ... "level": "warning", ... "code": "HAS_ID_COLUMN", ... "details": {"columns": ["customer_id"], "rows": None}, ... "action_options": [ ... { ... "code": "DROP_COL", ... "data_check_name": "IDColumnsDataCheck", ... "parameters": {}, ... "metadata": {"columns": ["customer_id"], "rows": None} ... } ... ] ... } ... ] """ messages = [] X = infer_feature_types(X) if X.ww.time_index and self.exclude_time_index: X = X.ww.select(exclude="time_index") col_names = [col for col in X.columns] cols_named_id = [ col for col in col_names if (str(col).lower() == "id") ] # columns whose name is "id" id_cols = {col: 0.95 for col in cols_named_id} for dtypes in [["Double"], ["Integer", "IntegerNullable", "Categorical"]]: X_temp = X.ww.select(include=dtypes) check_all_unique = X_temp.nunique() == len(X_temp) cols_with_all_unique = check_all_unique[ check_all_unique ].index.tolist() # columns whose values are all unique # Temporary solution for downstream instances of integers being mapped to doubles. # Will be removed when resolved. if dtypes == ["Double"]: cols_with_all_unique = [ col for col in cols_with_all_unique if all( X_temp[col].mod(1).eq(0), ) # Parse out columns that contain all `integer` values ] id_cols.update( [ (col, 1.0) if col in id_cols else (col, 0.95) for col in cols_with_all_unique ], ) col_ends_with_id = [ col for col in col_names if str(col).lower().endswith("_id") ] # columns whose name ends with "_id" id_cols.update( [ (col, 1.0) if str(col) in id_cols else (col, 0.95) for col in col_ends_with_id ], ) id_cols_above_threshold = { key: value for key, value in id_cols.items() if value >= self.id_threshold } if id_cols_above_threshold: if ( col_names[0] in id_cols_above_threshold and id_cols_above_threshold[col_names[0]] == 1.0 ): del id_cols_above_threshold[col_names[0]] warning_msg = "The first column '{}' is likely to be the primary key" warning_msg = warning_msg.format( col_names[0], ) messages.append( DataCheckWarning( message=warning_msg, data_check_name=self.name, message_code=DataCheckMessageCode.HAS_ID_FIRST_COLUMN, details={"columns": [col_names[0]]}, action_options=[ DataCheckActionOption( DataCheckActionCode.SET_FIRST_COL_ID, data_check_name=self.name, metadata={"columns": [col_names[0]]}, ), ], ).to_dict(), ) if id_cols_above_threshold: warning_msg = "Columns {} are {}% or more likely to be an ID column" warning_msg = warning_msg.format( (", ").join( ["'{}'".format(str(col)) for col in id_cols_above_threshold], ), self.id_threshold * 100, ) messages.append( DataCheckWarning( message=warning_msg, data_check_name=self.name, message_code=DataCheckMessageCode.HAS_ID_COLUMN, details={"columns": list(id_cols_above_threshold)}, action_options=[ DataCheckActionOption( DataCheckActionCode.DROP_COL, data_check_name=self.name, metadata={"columns": list(id_cols_above_threshold)}, ), ], ).to_dict(), ) return messages