Source code for evalml.exceptions.exceptions
"""Exceptions used in EvalML."""
from enum import Enum
[docs]class MethodPropertyNotFoundError(Exception):
"""Exception to raise when a class is does not have an expected method or property."""
pass
[docs]class PipelineNotFoundError(Exception):
"""An exception raised when a particular pipeline is not found in automl search results."""
pass
[docs]class ObjectiveNotFoundError(Exception):
"""Exception to raise when specified objective does not exist."""
pass
[docs]class MissingComponentError(Exception):
"""An exception raised when a component is not found in all_components()."""
pass
[docs]class ComponentNotYetFittedError(Exception):
"""An exception to be raised when predict/predict_proba/transform is called on a component without fitting first."""
pass
[docs]class PipelineNotYetFittedError(Exception):
"""An exception to be raised when predict/predict_proba/transform is called on a pipeline without fitting first."""
pass
[docs]class AutoMLSearchException(Exception):
"""Exception raised when all pipelines in an automl batch return a score of NaN for the primary objective."""
pass
[docs]class PipelineScoreError(Exception):
"""An exception raised when a pipeline errors while scoring any objective in a list of objectives.
Args:
exceptions (dict): A dictionary mapping an objective name (str) to a tuple of the form (exception, traceback).
All of the objectives that errored will be stored here.
scored_successfully (dict): A dictionary mapping an objective name (str) to a score value. All of the objectives
that did not error will be stored here.
"""
def __init__(self, exceptions, scored_successfully):
self.exceptions = exceptions
self.scored_successfully = scored_successfully
# Format the traceback message
exception_list = []
for objective, (exception, tb) in exceptions.items():
exception_list.append(
f"{objective} encountered {str(exception.__class__.__name__)} with message ({str(exception)}):\n",
)
exception_list.extend(tb)
message = "\n".join(exception_list)
self.message = message
super().__init__(message)
[docs]class DataCheckInitError(Exception):
"""Exception raised when a data check can't initialize with the parameters given."""
[docs]class NullsInColumnWarning(UserWarning):
"""Warning thrown when there are null values in the column of interest."""
[docs]class ObjectiveCreationError(Exception):
"""Exception when get_objective tries to instantiate an objective and required args are not provided."""
[docs]class NoPositiveLabelException(Exception):
"""Exception when a particular classification label for the 'positive' class cannot be found in the column index or unique values."""
[docs]class ParameterNotUsedWarning(UserWarning):
"""Warning thrown when a pipeline parameter isn't used in a defined pipeline's component graph during initialization."""
def __init__(self, components):
self.components = components
msg = f"Parameters for components {components} will not be used to instantiate the pipeline since they don't appear in the pipeline"
super().__init__(msg)
[docs]class ValidationErrorCode(Enum):
"""Enum identifying the type of error encountered in holdout validation."""
INVALID_HOLDOUT_LENGTH = "invalid_holdout_length"
"""invalid_holdout_length"""
INVALID_HOLDOUT_GAP_SEPARATION = "invalid_holdout_gap_separation"
"""invalid_holdout_gap_separation"""
[docs]class PartialDependenceErrorCode(Enum):
"""Enum identifying the type of error encountered in partial dependence."""
TOO_MANY_FEATURES = "too_many_features"
"""too_many_features"""
FEATURES_ARGUMENT_INCORRECT_TYPES = "features_argument_incorrect_types"
"""features_argument_incorrect_types"""
UNFITTED_PIPELINE = "unfitted_pipeline"
"""unfitted_pipeline"""
PIPELINE_IS_BASELINE = "pipeline_is_baseline"
"""pipeline_is_baseline"""
TWO_WAY_REQUESTED_FOR_DATES = "two_way_requested_for_dates"
"""two_way_requested_for_dates"""
FEATURE_IS_ALL_NANS = "feature_is_all_nans"
"""feature_is_all_nans"""
FEATURE_IS_MOSTLY_ONE_VALUE = "feature_is_mostly_one_value"
"""feature_is_mostly_one_value"""
COMPUTED_PERCENTILES_TOO_CLOSE = "computed_percentiles_too_close"
"""computed_percentiles_too_close"""
INVALID_FEATURE_TYPE = "invalid_feature_type"
"""invalid_feature_type"""
ICE_PLOT_REQUESTED_FOR_TWO_WAY_PLOT = (
"ice_plot_requested_for_two_way_partial_dependence_plot"
)
"""ice_plot_requested_for_two_way_partial_dependence_plot"""
INVALID_CLASS_LABEL = "invalid_class_label_requested_for_plot"
"""invalid_class_label_requested_for_plot"""
ALL_OTHER_ERRORS = "all_other_errors"
"""all_other_errors"""
[docs]class PartialDependenceError(ValueError):
"""Exception raised for all errors that partial dependence can raise.
Args:
message (str): descriptive error message
code (PartialDependenceErrorCode): code for speicific error
"""
def __init__(self, message, code):
self.code = code
super().__init__(message)
[docs]class PipelineErrorCodeEnum(Enum):
"""Enum identifying the type of error encountered while applying a pipeline."""
PREDICT_INPUT_SCHEMA_UNEQUAL = "predict_input_schema_unequal"
"""predict_input_schema_unequal"""
[docs]class PipelineError(ValueError):
"""Exception raised for errors that can be raised when applying a pipeline.
Args:
message (str): descriptive error message
code (PipelineErrorCodeEnum): code for specific error
details (dict): additional details for error
"""
def __init__(self, message, code, details=None):
self.code = code
self.details = details
super().__init__(message)