"""Standard machine learning objective functions."""
import warnings
import numpy as np
import pandas as pd
from sklearn import metrics
from sklearn.preprocessing import label_binarize
from sktime.performance_metrics.forecasting import MeanAbsolutePercentageError
from evalml.objectives.binary_classification_objective import (
BinaryClassificationObjective,
)
from evalml.objectives.multiclass_classification_objective import (
MulticlassClassificationObjective,
)
from evalml.objectives.regression_objective import RegressionObjective
from evalml.objectives.time_series_regression_objective import (
TimeSeriesRegressionObjective,
)
from evalml.utils import classproperty
[docs]class AccuracyBinary(BinaryClassificationObjective):
"""Accuracy score for binary classification.
Example:
>>> y_true = pd.Series([0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(AccuracyBinary().objective_function(y_true, y_pred), 0.6363636)
"""
name = "Accuracy Binary"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
expected_range = [0, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for accuracy score for binary classification."""
return metrics.accuracy_score(y_true, y_predicted, sample_weight=sample_weight)
[docs]class AccuracyMulticlass(MulticlassClassificationObjective):
"""Accuracy score for multiclass classification.
Example:
>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(AccuracyMulticlass().objective_function(y_true, y_pred), 0.5454545)
"""
name = "Accuracy Multiclass"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
expected_range = [0, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for accuracy score for multiclass classification."""
return metrics.accuracy_score(y_true, y_predicted, sample_weight=sample_weight)
[docs]class BalancedAccuracyBinary(BinaryClassificationObjective):
"""Balanced accuracy score for binary classification.
Example:
>>> y_true = pd.Series([0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(BalancedAccuracyBinary().objective_function(y_true, y_pred), 0.60)
"""
name = "Balanced Accuracy Binary"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
expected_range = [0, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for accuracy score for balanced accuracy for binary classification."""
return metrics.balanced_accuracy_score(
y_true,
y_predicted,
sample_weight=sample_weight,
)
[docs]class BalancedAccuracyMulticlass(MulticlassClassificationObjective):
"""Balanced accuracy score for multiclass classification.
Example:
>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(BalancedAccuracyMulticlass().objective_function(y_true, y_pred), 0.5555555)
"""
name = "Balanced Accuracy Multiclass"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
expected_range = [0, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for accuracy score for balanced accuracy for multiclass classification."""
return metrics.balanced_accuracy_score(
y_true,
y_predicted,
sample_weight=sample_weight,
)
[docs]class F1(BinaryClassificationObjective):
"""F1 score for binary classification.
Example:
>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(F1().objective_function(y_true, y_pred), 0.25)
"""
name = "F1"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
expected_range = [0, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for F1 score for binary classification."""
return metrics.f1_score(
y_true,
y_predicted,
zero_division=0.0,
sample_weight=sample_weight,
)
[docs]class F1Micro(MulticlassClassificationObjective):
"""F1 score for multiclass classification using micro averaging.
Example:
>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(F1Micro().objective_function(y_true, y_pred), 0.5454545)
"""
name = "F1 Micro"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
expected_range = [0, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for F1 score for multiclass classification."""
return metrics.f1_score(
y_true,
y_predicted,
average="micro",
zero_division=0.0,
sample_weight=sample_weight,
)
[docs]class F1Macro(MulticlassClassificationObjective):
"""F1 score for multiclass classification using macro averaging.
Example:
>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(F1Macro().objective_function(y_true, y_pred), 0.5476190)
"""
name = "F1 Macro"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
expected_range = [0, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for F1 score for multiclass classification using macro averaging."""
return metrics.f1_score(
y_true,
y_predicted,
average="macro",
zero_division=0.0,
sample_weight=sample_weight,
)
[docs]class F1Weighted(MulticlassClassificationObjective):
"""F1 score for multiclass classification using weighted averaging.
Example:
>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(F1Weighted().objective_function(y_true, y_pred), 0.5454545)
"""
name = "F1 Weighted"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
expected_range = [0, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for F1 score for multiclass classification using weighted averaging."""
return metrics.f1_score(
y_true,
y_predicted,
average="weighted",
zero_division=0.0,
sample_weight=sample_weight,
)
[docs]class Precision(BinaryClassificationObjective):
"""Precision score for binary classification.
Example:
>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(Precision().objective_function(y_true, y_pred), 1.0)
"""
name = "Precision"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
expected_range = [0, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for precision score for binary classification."""
return metrics.precision_score(
y_true,
y_predicted,
zero_division=0.0,
sample_weight=sample_weight,
)
[docs]class PrecisionMicro(MulticlassClassificationObjective):
"""Precision score for multiclass classification using micro averaging.
Example:
>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(PrecisionMicro().objective_function(y_true, y_pred), 0.5454545)
"""
name = "Precision Micro"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
expected_range = [0, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for precision score for binary classification using micro-averaging."""
return metrics.precision_score(
y_true,
y_predicted,
average="micro",
zero_division=0.0,
sample_weight=sample_weight,
)
[docs]class PrecisionMacro(MulticlassClassificationObjective):
"""Precision score for multiclass classification using macro-averaging.
Example:
>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(PrecisionMacro().objective_function(y_true, y_pred), 0.5555555)
"""
name = "Precision Macro"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
expected_range = [0, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for precision score for multiclass classification using macro-averaging."""
return metrics.precision_score(
y_true,
y_predicted,
average="macro",
zero_division=0.0,
sample_weight=sample_weight,
)
[docs]class PrecisionWeighted(MulticlassClassificationObjective):
"""Precision score for multiclass classification using weighted averaging.
Example:
>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(PrecisionWeighted().objective_function(y_true, y_pred), 0.5606060)
"""
name = "Precision Weighted"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
expected_range = [0, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for precision score for multiclass classification using weighted averaging."""
return metrics.precision_score(
y_true,
y_predicted,
average="weighted",
zero_division=0.0,
sample_weight=sample_weight,
)
[docs]class Recall(BinaryClassificationObjective):
"""Recall score for binary classification.
Example:
>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(Recall().objective_function(y_true, y_pred), 0.1428571)
"""
name = "Recall"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
expected_range = [0, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for recall score for binary classification."""
return metrics.recall_score(
y_true,
y_predicted,
zero_division=0.0,
sample_weight=sample_weight,
)
[docs]class RecallMicro(MulticlassClassificationObjective):
"""Recall score for multiclass classification using micro averaging.
Example:
>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(RecallMicro().objective_function(y_true, y_pred), 0.5454545)
"""
name = "Recall Micro"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
expected_range = [0, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for recall score for multiclass classification using micro-averaging."""
return metrics.recall_score(
y_true,
y_predicted,
average="micro",
zero_division=0.0,
sample_weight=sample_weight,
)
[docs]class RecallMacro(MulticlassClassificationObjective):
"""Recall score for multiclass classification using macro averaging.
Example:
>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(RecallMacro().objective_function(y_true, y_pred), 0.5555555)
"""
name = "Recall Macro"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
expected_range = [0, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for recall score for multiclass classification using macro-averaging."""
return metrics.recall_score(
y_true,
y_predicted,
average="macro",
zero_division=0.0,
sample_weight=sample_weight,
)
[docs]class RecallWeighted(MulticlassClassificationObjective):
"""Recall score for multiclass classification using weighted averaging.
Example:
>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(RecallWeighted().objective_function(y_true, y_pred), 0.5454545)
"""
name = "Recall Weighted"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = True
expected_range = [0, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for recall score for multiclass classification using weighted averaging."""
return metrics.recall_score(
y_true,
y_predicted,
average="weighted",
zero_division=0.0,
sample_weight=sample_weight,
)
[docs]class AUC(BinaryClassificationObjective):
"""AUC score for binary classification.
Example:
>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(AUC().objective_function(y_true, y_pred), 0.5714285)
"""
name = "AUC"
greater_is_better = True
score_needs_proba = True
perfect_score = 1.0
is_bounded_like_percentage = True
expected_range = [0, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for AUC score for binary classification."""
return metrics.roc_auc_score(y_true, y_predicted, sample_weight=sample_weight)
[docs]class AUCMicro(MulticlassClassificationObjective):
"""AUC score for multiclass classification using micro averaging.
Example:
>>> y_true = [0, 1, 2, 0, 2, 1]
>>> y_pred = [[0.7, 0.2, 0.1],
... [0.3, 0.5, 0.2],
... [0.1, 0.3, 0.6],
... [0.9, 0.1, 0.0],
... [0.3, 0.1, 0.6],
... [0.5, 0.5, 0.0]]
>>> np.testing.assert_almost_equal(AUCMicro().objective_function(y_true, y_pred), 0.9861111)
"""
name = "AUC Micro"
greater_is_better = True
score_needs_proba = True
perfect_score = 1.0
is_bounded_like_percentage = True
expected_range = [0, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for AUC score for multiclass classification using micro-averaging."""
y_true, y_predicted = _handle_predictions(y_true, y_predicted)
return metrics.roc_auc_score(
y_true,
y_predicted,
average="micro",
sample_weight=sample_weight,
)
[docs]class AUCMacro(MulticlassClassificationObjective):
"""AUC score for multiclass classification using macro averaging.
Example:
>>> y_true = [0, 1, 2, 0, 2, 1]
>>> y_pred = [[0.7, 0.2, 0.1],
... [0.1, 0.0, 0.9],
... [0.1, 0.3, 0.6],
... [0.9, 0.1, 0.0],
... [0.6, 0.1, 0.3],
... [0.5, 0.5, 0.0]]
>>> np.testing.assert_almost_equal(AUCMacro().objective_function(y_true, y_pred), 0.75)
"""
name = "AUC Macro"
greater_is_better = True
score_needs_proba = True
perfect_score = 1.0
is_bounded_like_percentage = True
expected_range = [0, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for AUC score for multiclass classification using macro-averaging."""
y_true, y_predicted = _handle_predictions(y_true, y_predicted)
return metrics.roc_auc_score(
y_true,
y_predicted,
average="macro",
sample_weight=sample_weight,
)
[docs]class AUCWeighted(MulticlassClassificationObjective):
"""AUC Score for multiclass classification using weighted averaging.
Example:
>>> y_true = [0, 1, 2, 0, 2, 1]
>>> y_pred = [[0.7, 0.2, 0.1],
... [0.1, 0.0, 0.9],
... [0.1, 0.3, 0.6],
... [0.1, 0.2, 0.7],
... [0.6, 0.1, 0.3],
... [0.5, 0.2, 0.3]]
>>> np.testing.assert_almost_equal(AUCWeighted().objective_function(y_true, y_pred), 0.4375)
"""
name = "AUC Weighted"
greater_is_better = True
score_needs_proba = True
perfect_score = 1.0
is_bounded_like_percentage = True
expected_range = [0, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for AUC Score for multiclass classification using weighted averaging."""
y_true, y_predicted = _handle_predictions(y_true, y_predicted)
return metrics.roc_auc_score(
y_true,
y_predicted,
average="weighted",
sample_weight=sample_weight,
)
[docs]class Gini(BinaryClassificationObjective):
"""Gini coefficient for binary classification.
Example:
>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(Gini().objective_function(y_true, y_pred), 0.1428571)
"""
name = "Gini"
greater_is_better = True
score_needs_proba = True
perfect_score = 1.0
is_bounded_like_percentage = False
expected_range = [-1, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for Gini coefficient for binary classification."""
auc = metrics.roc_auc_score(y_true, y_predicted, sample_weight=sample_weight)
return 2 * auc - 1
[docs]class LogLossBinary(BinaryClassificationObjective):
"""Log Loss for binary classification.
Example:
>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(LogLossBinary().objective_function(y_true, y_pred), 19.6601745)
"""
name = "Log Loss Binary"
greater_is_better = False
score_needs_proba = True
perfect_score = 0.0
is_bounded_like_percentage = False # Range [0, Inf)
expected_range = [0, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for log loss for binary classification."""
return metrics.log_loss(y_true, y_predicted, sample_weight=sample_weight)
[docs]class LogLossMulticlass(MulticlassClassificationObjective):
"""Log Loss for multiclass classification.
Example:
>>> y_true = [0, 1, 2, 0, 2, 1]
>>> y_pred = [[0.7, 0.2, 0.1],
... [0.3, 0.5, 0.2],
... [0.1, 0.3, 0.6],
... [0.9, 0.1, 0.0],
... [0.3, 0.1, 0.6],
... [0.5, 0.5, 0.0]]
>>> np.testing.assert_almost_equal(LogLossMulticlass().objective_function(y_true, y_pred), 0.4783301)
"""
name = "Log Loss Multiclass"
greater_is_better = False
score_needs_proba = True
perfect_score = 0.0
is_bounded_like_percentage = False # Range [0, Inf)
expected_range = [0, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for log loss for multiclass classification."""
return metrics.log_loss(y_true, y_predicted, sample_weight=sample_weight)
[docs]class MCCBinary(BinaryClassificationObjective):
"""Matthews correlation coefficient for binary classification.
Example:
>>> y_true = pd.Series([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1])
>>> y_pred = pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
>>> np.testing.assert_almost_equal(MCCBinary().objective_function(y_true, y_pred), 0.2390457)
"""
name = "MCC Binary"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = False # Range [-1, 1]
expected_range = [-1, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for Matthews correlation coefficient for binary classification."""
with warnings.catch_warnings():
# catches runtime warning when dividing by 0.0
warnings.simplefilter("ignore", RuntimeWarning)
return metrics.matthews_corrcoef(
y_true,
y_predicted,
sample_weight=sample_weight,
)
[docs]class MCCMulticlass(MulticlassClassificationObjective):
"""Matthews correlation coefficient for multiclass classification.
Example:
>>> y_true = pd.Series([0, 1, 0, 2, 0, 1, 2, 1, 2, 0, 2])
>>> y_pred = pd.Series([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2])
>>> np.testing.assert_almost_equal(MCCMulticlass().objective_function(y_true, y_pred), 0.325)
"""
name = "MCC Multiclass"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = False # Range [-1, 1]
expected_range = [-1, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for Matthews correlation coefficient for multiclass classification."""
with warnings.catch_warnings():
# catches runtime warning when dividing by 0.0
warnings.simplefilter("ignore", RuntimeWarning)
return metrics.matthews_corrcoef(
y_true,
y_predicted,
sample_weight=sample_weight,
)
[docs]class RootMeanSquaredError(RegressionObjective):
"""Root mean squared error for regression.
Example:
>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(RootMeanSquaredError().objective_function(y_true, y_pred), 0.3988620)
"""
name = "Root Mean Squared Error"
greater_is_better = False
score_needs_proba = False
perfect_score = 0.0
is_bounded_like_percentage = False # Range [0, Inf)
expected_range = [0, float("inf")]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for root mean squared error for regression."""
return metrics.mean_squared_error(
y_true,
y_predicted,
squared=False,
sample_weight=sample_weight,
)
[docs]class RootMeanSquaredLogError(RegressionObjective):
"""Root mean squared log error for regression.
Only valid for nonnegative inputs. Otherwise, will throw a ValueError.
Example:
>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(RootMeanSquaredLogError().objective_function(y_true, y_pred), 0.13090204)
"""
name = "Root Mean Squared Log Error"
greater_is_better = False
score_needs_proba = False
perfect_score = 0.0
is_bounded_like_percentage = False # Range [0, Inf)
expected_range = [0, float("inf")]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for root mean squared log error for regression."""
return np.sqrt(
metrics.mean_squared_log_error(
y_true,
y_predicted,
sample_weight=sample_weight,
),
)
@classproperty
def positive_only(self):
"""If True, this objective is only valid for positive data."""
return True
[docs]class MeanSquaredLogError(RegressionObjective):
"""Mean squared log error for regression.
Only valid for nonnegative inputs. Otherwise, will throw a ValueError.
Example:
>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MeanSquaredLogError().objective_function(y_true, y_pred), 0.0171353)
"""
name = "Mean Squared Log Error"
greater_is_better = False
score_needs_proba = False
perfect_score = 0.0
is_bounded_like_percentage = False # Range [0, Inf)
expected_range = [0, float("inf")]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for mean squared log error for regression."""
return metrics.mean_squared_log_error(
y_true,
y_predicted,
sample_weight=sample_weight,
)
@classproperty
def positive_only(self):
"""If True, this objective is only valid for positive data."""
return True
[docs]class R2(RegressionObjective):
"""Coefficient of determination for regression.
Example:
>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(R2().objective_function(y_true, y_pred), 0.7638036)
"""
name = "R2"
greater_is_better = True
score_needs_proba = False
perfect_score = 1
is_bounded_like_percentage = False # Range (-Inf, 1]
expected_range = [-1, 1]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for coefficient of determination for regression."""
return metrics.r2_score(y_true, y_predicted, sample_weight=sample_weight)
[docs]class MAE(RegressionObjective):
"""Mean absolute error for regression.
Example:
>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MAE().objective_function(y_true, y_pred), 0.2727272)
"""
name = "MAE"
greater_is_better = False
score_needs_proba = False
perfect_score = 0.0
is_bounded_like_percentage = False # Range [0, Inf)
expected_range = [0, float("inf")]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for mean absolute error for regression."""
return metrics.mean_absolute_error(
y_true,
y_predicted,
sample_weight=sample_weight,
)
[docs]class MAPE(TimeSeriesRegressionObjective):
"""Mean absolute percentage error for time series regression. Scaled by 100 to return a percentage.
Only valid for nonzero inputs. Otherwise, will throw a ValueError.
Example:
>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MAPE().objective_function(y_true, y_pred), 15.9848484)
"""
name = "Mean Absolute Percentage Error"
greater_is_better = False
score_needs_proba = False
perfect_score = 0.0
is_bounded_like_percentage = False # Range [0, Inf)
expected_range = [0, float("inf")]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for mean absolute percentage error for time series regression."""
if (y_true == 0).any():
raise ValueError(
"Mean Absolute Percentage Error cannot be used when "
"targets contain the value 0.",
)
if isinstance(y_true, pd.Series):
y_true = y_true.to_numpy()
if isinstance(y_predicted, pd.Series):
y_predicted = y_predicted.to_numpy()
scaled_difference = (y_true - y_predicted) / y_true
return np.abs(scaled_difference).mean() * 100
@classproperty
def positive_only(self):
"""If True, this objective is only valid for positive data."""
return True
[docs]class SMAPE(TimeSeriesRegressionObjective):
"""Mean absolute percentage error for time series regression. Scaled by 100 to return a percentage.
Only valid for nonzero inputs. Otherwise, will throw a ValueError.
Example:
>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(SMAPE().objective_function(y_true, y_pred), 18.13652589)
"""
name = "Symmetric Mean Absolute Percentage Error"
greater_is_better = False
score_needs_proba = False
perfect_score = 0.0
is_bounded_like_percentage = True # Range [0, 200]
expected_range = [0, 200]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for mean absolute percentage error for time series regression."""
if ((abs(y_true) + abs(y_predicted)) == 0).any():
raise ValueError(
"Symmetric Mean Absolute Percentage Error cannot be used when "
"true and predicted targets both contain the value 0.",
)
if isinstance(y_true, pd.Series):
y_true = y_true.to_numpy()
if isinstance(y_predicted, pd.Series):
y_predicted = y_predicted.to_numpy()
smape = MeanAbsolutePercentageError(symmetric=True)
return smape(y_true, y_predicted) * 100
@classproperty
def positive_only(self):
"""If True, this objective is only valid for positive data."""
return True
[docs]class MSE(RegressionObjective):
"""Mean squared error for regression.
Example:
>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MSE().objective_function(y_true, y_pred), 0.1590909)
"""
name = "MSE"
greater_is_better = False
score_needs_proba = False
perfect_score = 0.0
is_bounded_like_percentage = False # Range [0, Inf)
expected_range = [0, float("inf")]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for mean squared error for regression."""
return metrics.mean_squared_error(
y_true,
y_predicted,
sample_weight=sample_weight,
)
[docs]class MaxError(RegressionObjective):
"""Maximum residual error for regression.
Example:
>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(MaxError().objective_function(y_true, y_pred), 1.0)
"""
name = "MaxError"
greater_is_better = False
score_needs_proba = False
perfect_score = 0.0
is_bounded_like_percentage = False # Range [0, Inf)
expected_range = [0, float("inf")]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for maximum residual error for regression."""
return metrics.max_error(y_true, y_predicted)
[docs]class ExpVariance(RegressionObjective):
"""Explained variance score for regression.
Example:
>>> y_true = pd.Series([1.5, 2, 3, 1, 0.5, 1, 2.5, 2.5, 1, 0.5, 2])
>>> y_pred = pd.Series([1.5, 2.5, 2, 1, 0.5, 1, 3, 2.25, 0.75, 0.25, 1.75])
>>> np.testing.assert_almost_equal(ExpVariance().objective_function(y_true, y_pred), 0.7760736)
"""
name = "ExpVariance"
greater_is_better = True
score_needs_proba = False
perfect_score = 1.0
is_bounded_like_percentage = False # Range (-Inf, 1]
expected_range = [float("-inf"), 1]
[docs] def objective_function(self, y_true, y_predicted, X=None, sample_weight=None):
"""Objective function for explained variance score for regression."""
return metrics.explained_variance_score(
y_true,
y_predicted,
sample_weight=sample_weight,
)
def _handle_predictions(y_true, y_pred):
if len(np.unique(y_true)) > 2:
classes = np.unique(y_true)
y_true = label_binarize(y_true, classes=classes)
return y_true, y_pred