Source code for evalml.utils.base_meta
"""Metaclass that overrides creating a new component or pipeline by wrapping methods with validators and setters."""
from abc import ABCMeta
from functools import wraps
[docs]class BaseMeta(ABCMeta):
"""Metaclass that overrides creating a new component or pipeline by wrapping methods with validators and setters."""
FIT_METHODS = ["fit", "fit_transform"]
METHODS_TO_CHECK = [
"predict",
"predict_proba",
"transform",
"inverse_transform",
"get_trend_dataframe",
]
PROPERTIES_TO_CHECK = ["feature_importance"]
[docs] @classmethod
def set_fit(cls, method):
"""Wrapper for the fit method."""
@wraps(method)
def _set_fit(self, X, y=None):
return_value = method(self, X, y)
self._is_fitted = True
return return_value
return _set_fit
def __new__(cls, name, bases, dct):
"""Create a new instance."""
for attribute in dct:
if attribute in cls.FIT_METHODS:
dct[attribute] = cls.set_fit(dct[attribute])
if attribute in cls.METHODS_TO_CHECK:
dct[attribute] = cls.check_for_fit(dct[attribute])
if attribute in cls.PROPERTIES_TO_CHECK:
property_orig = dct[attribute]
dct[attribute] = property(
cls.check_for_fit(property_orig.__get__),
property_orig.__set__,
property_orig.__delattr__,
property_orig.__doc__,
)
return super().__new__(cls, name, bases, dct)