id_columns_data_check ================================================== .. py:module:: evalml.data_checks.id_columns_data_check .. autoapi-nested-parse:: Data check that checks if any of the features are likely to be ID columns. Module Contents --------------- Classes Summary ~~~~~~~~~~~~~~~ .. autoapisummary:: evalml.data_checks.id_columns_data_check.IDColumnsDataCheck Contents ~~~~~~~~~~~~~~~~~~~ .. py:class:: IDColumnsDataCheck(id_threshold=1.0, exclude_time_index=True) Check if any of the features are likely to be ID columns. :param id_threshold: The probability threshold to be considered an ID column. Defaults to 1.0. :type id_threshold: float :param exclude_time_index: If True, the column set as the time index will not be included in the data check. Default is True. :type exclude_time_index: bool **Methods** .. autoapisummary:: :nosignatures: evalml.data_checks.id_columns_data_check.IDColumnsDataCheck.name evalml.data_checks.id_columns_data_check.IDColumnsDataCheck.validate .. py:method:: name(cls) Return a name describing the data check. .. py:method:: validate(self, X, y=None) Check if any of the features are likely to be ID columns. Currently performs a number of simple checks. Checks performed are: - column name is "id" - column name ends in "_id" - column contains all unique values (and is categorical / integer type) :param X: The input features to check. :type X: pd.DataFrame, np.ndarray :param y: The target. Defaults to None. Ignored. :type y: pd.Series :returns: A dictionary of features with column name or index and their probability of being ID columns :rtype: dict .. rubric:: Examples >>> import pandas as pd Columns that end in "_id" and are completely unique are likely to be ID columns. >>> df = pd.DataFrame({ ... "profits": [25, 15, 15, 31, 19], ... "customer_id": [123, 124, 125, 126, 127], ... "Sales": [10, 42, 31, 51, 61] ... }) ... >>> id_col_check = IDColumnsDataCheck() >>> assert id_col_check.validate(df) == [ ... { ... "message": "Columns 'customer_id' are 100.0% or more likely to be an ID column", ... "data_check_name": "IDColumnsDataCheck", ... "level": "warning", ... "code": "HAS_ID_COLUMN", ... "details": {"columns": ["customer_id"], "rows": None}, ... "action_options": [ ... { ... "code": "DROP_COL", ... "data_check_name": "IDColumnsDataCheck", ... "parameters": {}, ... "metadata": {"columns": ["customer_id"], "rows": None} ... } ... ] ... } ... ] Columns named "ID" with all unique values will also be identified as ID columns. >>> df = df.rename(columns={"customer_id": "ID"}) >>> id_col_check = IDColumnsDataCheck() >>> assert id_col_check.validate(df) == [ ... { ... "message": "Columns 'ID' are 100.0% or more likely to be an ID column", ... "data_check_name": "IDColumnsDataCheck", ... "level": "warning", ... "code": "HAS_ID_COLUMN", ... "details": {"columns": ["ID"], "rows": None}, ... "action_options": [ ... { ... "code": "DROP_COL", ... "data_check_name": "IDColumnsDataCheck", ... "parameters": {}, ... "metadata": {"columns": ["ID"], "rows": None} ... } ... ] ... } ... ] Despite being all unique, "Country_Rank" will not be identified as an ID column as id_threshold is set to 1.0 by default and its name doesn't indicate that it's an ID. >>> df = pd.DataFrame({ ... "humidity": ["high", "very high", "low", "low", "high"], ... "Country_Rank": [1, 2, 3, 4, 5], ... "Sales": ["very high", "high", "high", "medium", "very low"] ... }) ... >>> id_col_check = IDColumnsDataCheck() >>> assert id_col_check.validate(df) == [] However lowering the threshold will cause this column to be identified as an ID. >>> id_col_check = IDColumnsDataCheck() >>> id_col_check = IDColumnsDataCheck(id_threshold=0.95) >>> assert id_col_check.validate(df) == [ ... { ... "message": "Columns 'Country_Rank' are 95.0% or more likely to be an ID column", ... "data_check_name": "IDColumnsDataCheck", ... "level": "warning", ... "details": {"columns": ["Country_Rank"], "rows": None}, ... "code": "HAS_ID_COLUMN", ... "action_options": [ ... { ... "code": "DROP_COL", ... "data_check_name": "IDColumnsDataCheck", ... "parameters": {}, ... "metadata": {"columns": ["Country_Rank"], "rows": None} ... } ... ] ... } ... ] If the first column of the dataframe has all unique values and is named either 'ID' or a name that ends with '_id', it is probably the primary key. The other ID columns should be dropped. >>> df = pd.DataFrame({ ... "sales_id": [0, 1, 2, 3, 4], ... "customer_id": [123, 124, 125, 126, 127], ... "Sales": [10, 42, 31, 51, 61] ... }) ... >>> id_col_check = IDColumnsDataCheck() >>> assert id_col_check.validate(df) == [ ... { ... "message": "The first column 'sales_id' is likely to be the primary key", ... "data_check_name": "IDColumnsDataCheck", ... "level": "warning", ... "code": "HAS_ID_FIRST_COLUMN", ... "details": {"columns": ["sales_id"], "rows": None}, ... "action_options": [ ... { ... "code": "SET_FIRST_COL_ID", ... "data_check_name": "IDColumnsDataCheck", ... "parameters": {}, ... "metadata": {"columns": ["sales_id"], "rows": None} ... } ... ] ... }, ... { ... "message": "Columns 'customer_id' are 100.0% or more likely to be an ID column", ... "data_check_name": "IDColumnsDataCheck", ... "level": "warning", ... "code": "HAS_ID_COLUMN", ... "details": {"columns": ["customer_id"], "rows": None}, ... "action_options": [ ... { ... "code": "DROP_COL", ... "data_check_name": "IDColumnsDataCheck", ... "parameters": {}, ... "metadata": {"columns": ["customer_id"], "rows": None} ... } ... ] ... } ... ]