label_encoder ========================================================================= .. py:module:: evalml.pipelines.components.transformers.encoders.label_encoder .. autoapi-nested-parse:: A transformer that encodes target labels using values between 0 and num_classes - 1. Module Contents --------------- Classes Summary ~~~~~~~~~~~~~~~ .. autoapisummary:: evalml.pipelines.components.transformers.encoders.label_encoder.LabelEncoder Contents ~~~~~~~~~~~~~~~~~~~ .. py:class:: LabelEncoder(positive_label=None, random_seed=0, **kwargs) A transformer that encodes target labels using values between 0 and num_classes - 1. :param positive_label: The label for the class that should be treated as positive (1) for binary classification problems. Ignored for multiclass problems. Defaults to None. :type positive_label: int, str :param random_seed: Seed for the random number generator. Defaults to 0. Ignored. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - {} * - **modifies_features** - False * - **modifies_target** - True * - **name** - Label Encoder * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.transformers.encoders.label_encoder.LabelEncoder.clone evalml.pipelines.components.transformers.encoders.label_encoder.LabelEncoder.default_parameters evalml.pipelines.components.transformers.encoders.label_encoder.LabelEncoder.describe evalml.pipelines.components.transformers.encoders.label_encoder.LabelEncoder.fit evalml.pipelines.components.transformers.encoders.label_encoder.LabelEncoder.fit_transform evalml.pipelines.components.transformers.encoders.label_encoder.LabelEncoder.inverse_transform evalml.pipelines.components.transformers.encoders.label_encoder.LabelEncoder.load evalml.pipelines.components.transformers.encoders.label_encoder.LabelEncoder.needs_fitting evalml.pipelines.components.transformers.encoders.label_encoder.LabelEncoder.parameters evalml.pipelines.components.transformers.encoders.label_encoder.LabelEncoder.save evalml.pipelines.components.transformers.encoders.label_encoder.LabelEncoder.transform evalml.pipelines.components.transformers.encoders.label_encoder.LabelEncoder.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: fit(self, X, y) Fits the label encoder. :param X: The input training data of shape [n_samples, n_features]. Ignored. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series :returns: self :raises ValueError: If input `y` is None. .. py:method:: fit_transform(self, X, y) Fit and transform data using the label encoder. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series :returns: The original features and an encoded version of the target. :rtype: pd.DataFrame, pd.Series .. py:method:: inverse_transform(self, y) Decodes the target data. :param y: Target data. :type y: pd.Series :returns: The decoded version of the target. :rtype: pd.Series :raises ValueError: If input `y` is None. .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: transform(self, X, y=None) Transform the target using the fitted label encoder. :param X: The input training data of shape [n_samples, n_features]. Ignored. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series :returns: The original features and an encoded version of the target. :rtype: pd.DataFrame, pd.Series :raises ValueError: If input `y` is None. .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional