grid_search_tuner#
Grid Search Optimizer, which generates all of the possible points to search for using a grid.
Module Contents#
Classes Summary#
Grid Search Optimizer, which generates all of the possible points to search for using a grid. |
Contents#
- class evalml.tuners.grid_search_tuner.GridSearchTuner(pipeline_hyperparameter_ranges, n_points=10, random_seed=0)[source]#
Grid Search Optimizer, which generates all of the possible points to search for using a grid.
- Parameters
pipeline_hyperparameter_ranges (dict) – a set of hyperparameter ranges corresponding to a pipeline’s parameters
n_points (int) – The number of points to sample from along each dimension defined in the
space
argument. Defaults to 10.random_seed (int) – Seed for random number generator. Unused in this class, defaults to 0.
Examples
>>> tuner = GridSearchTuner({'My Component': {'param a': [0.0, 10.0], 'param b': ['a', 'b', 'c']}}, n_points=5) >>> proposal = tuner.propose() ... >>> assert proposal.keys() == {'My Component'} >>> assert proposal['My Component'] == {'param a': 0.0, 'param b': 'a'}
Determines points using a grid search approach.
>>> for each in range(5): ... print(tuner.propose()) {'My Component': {'param a': 0.0, 'param b': 'b'}} {'My Component': {'param a': 0.0, 'param b': 'c'}} {'My Component': {'param a': 10.0, 'param b': 'a'}} {'My Component': {'param a': 10.0, 'param b': 'b'}} {'My Component': {'param a': 10.0, 'param b': 'c'}}
Methods
Not applicable to grid search tuner as generated parameters are not dependent on scores of previous parameters.
Gets the starting parameters given the pipeline hyperparameter range.
Checks if it is possible to generate a set of valid parameters. Stores generated parameters in
self.curr_params
to be returned bypropose()
.Returns parameters from _grid_points iterations.
- add(self, pipeline_parameters, score)[source]#
Not applicable to grid search tuner as generated parameters are not dependent on scores of previous parameters.
- Parameters
pipeline_parameters (dict) – a dict of the parameters used to evaluate a pipeline
score (float) – the score obtained by evaluating the pipeline with the provided parameters
- get_starting_parameters(self, hyperparameter_ranges, random_seed=0)#
Gets the starting parameters given the pipeline hyperparameter range.
- Parameters
hyperparameter_ranges (dict) – The custom hyperparameter ranges passed in during search. Used to determine the starting parameters.
random_seed (int) – The random seed to use. Defaults to 0.
- Returns
The starting parameters, randomly chosen, to initialize a pipeline with.
- Return type
dict
- is_search_space_exhausted(self)[source]#
Checks if it is possible to generate a set of valid parameters. Stores generated parameters in
self.curr_params
to be returned bypropose()
.- Returns
If no more valid parameters exists in the search space, return False.
- Return type
bool
- Raises
NoParamsException – If a search space is exhausted, then this exception is thrown.