tuner#
Base Tuner class.
Module Contents#
Contents#
- class evalml.tuners.tuner.Tuner(pipeline_hyperparameter_ranges, random_seed=0)[source]#
Base Tuner class.
Tuners implement different strategies for sampling from a search space. They’re used in EvalML to search the space of pipeline hyperparameters.
- Parameters
pipeline_hyperparameter_ranges (dict) – a set of hyperparameter ranges corresponding to a pipeline’s parameters.
random_seed (int) – The random state. Defaults to 0.
Methods
Register a set of hyperparameters with the score obtained from training a pipeline with those hyperparameters.
Gets the starting parameters given the pipeline hyperparameter range.
Optional. If possible search space for tuner is finite, this method indicates whether or not all possible parameters have been scored.
Returns a suggested set of parameters to train and score a pipeline with, based off the search space dimensions and prior samples.
- abstract add(self, pipeline_parameters, score)[source]#
Register a set of hyperparameters with the score obtained from training a pipeline with those hyperparameters.
- Parameters
pipeline_parameters (dict) – a dict of the parameters used to evaluate a pipeline
score (float) – the score obtained by evaluating the pipeline with the provided parameters
- Returns
None
- get_starting_parameters(self, hyperparameter_ranges, random_seed=0)[source]#
Gets the starting parameters given the pipeline hyperparameter range.
- Parameters
hyperparameter_ranges (dict) – The custom hyperparameter ranges passed in during search. Used to determine the starting parameters.
random_seed (int) – The random seed to use. Defaults to 0.
- Returns
The starting parameters, randomly chosen, to initialize a pipeline with.
- Return type
dict