Building a Lead Scoring Model with EvalML#

In this demo, we will build an optimized lead scoring model using EvalML. To optimize the pipeline, we will set up an objective function to maximize the revenue generated with true positives while taking into account the cost of false positives. At the end of this demo, we also show you how introducing the right objective during the training is significantly better than using a generic machine learning metric like AUC.

[1]:
import evalml
from evalml import AutoMLSearch
from evalml.objectives import LeadScoring
Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console)

Configure LeadScoring#

To optimize the pipelines toward the specific business needs of this model, you can set your own assumptions for how much value is gained through true positives and the cost associated with false positives. These parameters are

  • true_positive - dollar amount to be gained with a successful lead

  • false_positive - dollar amount to be lost with an unsuccessful lead

Using these parameters, EvalML builds a pileline that will maximize the amount of revenue per lead generated.

[2]:
lead_scoring_objective = LeadScoring(true_positives=100, false_positives=-5)

Dataset#

We will be utilizing a dataset detailing a customer’s job, country, state, zip, online action, the dollar amount of that action and whether they were a successful lead.

[3]:
from urllib.request import urlopen
import pandas as pd
import woodwork as ww

customers_data = urlopen(
    "https://featurelabs-static.s3.amazonaws.com/lead_scoring_ml_apps/customers.csv"
)
interactions_data = urlopen(
    "https://featurelabs-static.s3.amazonaws.com/lead_scoring_ml_apps/interactions.csv"
)
leads_data = urlopen(
    "https://featurelabs-static.s3.amazonaws.com/lead_scoring_ml_apps/previous_leads.csv"
)
customers = pd.read_csv(customers_data)
interactions = pd.read_csv(interactions_data)
leads = pd.read_csv(leads_data)

X = customers.merge(interactions, on="customer_id").merge(leads, on="customer_id")
y = X["label"]
X = X.drop(
    [
        "customer_id",
        "date_registered",
        "birthday",
        "phone",
        "email",
        "owner",
        "company",
        "id",
        "time_x",
        "session",
        "referrer",
        "time_y",
        "label",
        "country",
    ],
    axis=1,
)
display(X.head())
job state zip action amount
0 Engineer, mining NY 60091.0 page_view NaN
1 Psychologist, forensic CA NaN purchase 135.23
2 Psychologist, forensic CA NaN page_view NaN
3 Air cabin crew NaN 60091.0 download NaN
4 Air cabin crew NaN 60091.0 page_view NaN

We will convert our data into Woodwork data structures. Doing so enables us to have more control over the types passed to and inferred by AutoML.

[4]:
X.ww.init(semantic_tags={"job": "category"}, logical_types={"job": "Categorical"})
y = ww.init_series(y)
X.ww
[4]:
Physical Type Logical Type Semantic Tag(s)
Column
job category Categorical ['category']
state category Categorical ['category']
zip Int64 IntegerNullable ['numeric']
action category Categorical ['category']
amount float64 Double ['numeric']

Search for the best pipeline#

In order to validate the results of the pipeline creation and optimization process, we will save some of our data as a holdout set.

EvalML natively supports one-hot encoding and imputation so the above NaN and categorical values will be taken care of.

[5]:
X_train, X_holdout, y_train, y_holdout = evalml.preprocessing.split_data(
    X, y, problem_type="binary", test_size=0.2, random_seed=0
)

X.ww
[5]:
Physical Type Logical Type Semantic Tag(s)
Column
job category Categorical ['category']
state category Categorical ['category']
zip Int64 IntegerNullable ['numeric']
action category Categorical ['category']
amount float64 Double ['numeric']

Because the lead scoring labels are binary, we will use set the problem type to “binary”. When we call .search(), the search for the best pipeline will begin.

[6]:
automl = AutoMLSearch(
    X_train=X_train,
    y_train=y_train,
    problem_type="binary",
    objective=lead_scoring_objective,
    additional_objectives=["auc"],
    allowed_model_families=["extra_trees", "linear_model"],
    max_batches=3,
    verbose=True,
)

automl.search(interactive_plot=False)
AutoMLSearch will use mean CV score to rank pipelines.

*****************************
* Beginning pipeline search *
*****************************

Optimizing for Lead Scoring.
Greater score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 3 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:
        Starting cross validation
        Finished cross validation - mean Lead Scoring: 0.000

*****************************
* Evaluating Batch Number 1 *
*****************************

Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + Oversampler:
        Starting cross validation
        Finished cross validation - mean Lead Scoring: 1.424

*****************************
* Evaluating Batch Number 2 *
*****************************

Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model:
        Starting cross validation
        Finished cross validation - mean Lead Scoring: 1.360

*****************************
* Evaluating Batch Number 3 *
*****************************

Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label Encoder + Imputer + Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder + Oversampler:
        Starting cross validation
        Finished cross validation - mean Lead Scoring: 1.213
Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler + Oversampler:
        Starting cross validation
        Finished cross validation - mean Lead Scoring: 1.235
Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer + Label Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler + Oversampler:
        Starting cross validation
        Finished cross validation - mean Lead Scoring: 1.214

Search finished after 21.16 seconds
Best pipeline: Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + Oversampler
Best pipeline Lead Scoring: 1.423894
[6]:
{1: {'Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + Oversampler': 3.5771636962890625,
  'Total time of batch': 3.7019460201263428},
 2: {'Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model': 4.277435064315796,
  'Total time of batch': 4.406996726989746},
 3: {'Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label Encoder + Imputer + Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder + Oversampler': 3.5316975116729736,
  'Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler + Oversampler': 3.454920530319214,
  'Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer + Label Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler + Oversampler': 4.721990346908569,
  'Total time of batch': 12.171614408493042}}

View rankings and select pipeline#

Once the fitting process is done, we can see all of the pipelines that were searched, ranked by their score on the lead scoring objective we defined.

[7]:
automl.rankings
[7]:
id pipeline_name search_order ranking_score mean_cv_score standard_deviation_cv_score percent_better_than_baseline high_variance_cv parameters
0 1 Random Forest Classifier w/ Label Encoder + Im... 1 1.423894 1.423894 0.540845 inf False {'Label Encoder': {'positive_label': None}, 'I...
1 2 Random Forest Classifier w/ Label Encoder + Im... 2 1.360457 1.360457 0.590666 inf False {'Label Encoder': {'positive_label': None}, 'I...
2 4 Elastic Net Classifier w/ Label Encoder + Sele... 4 1.234589 1.234589 0.430687 inf False {'Label Encoder': {'positive_label': None}, 'N...
3 5 Logistic Regression Classifier w/ Label Encode... 5 1.214160 1.214160 0.395051 inf False {'Label Encoder': {'positive_label': None}, 'N...
4 3 Extra Trees Classifier w/ Label Encoder + Sele... 3 1.213167 1.213167 0.709773 inf False {'Label Encoder': {'positive_label': None}, 'N...
5 0 Mode Baseline Binary Classification Pipeline 0 0.000000 0.000000 0.000000 0.0 False {'Label Encoder': {'positive_label': None}, 'B...

To select the best pipeline we can call automl.best_pipeline.

[8]:
best_pipeline = automl.best_pipeline

Describe pipeline#

You can get more details about any pipeline, including how it performed on other objective functions by calling .describe_pipeline() and specifying the id of the pipeline.

[9]:
automl.describe_pipeline(automl.rankings.iloc[0]["id"])

***************************************************************************************
* Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + Oversampler *
***************************************************************************************

Problem Type: binary
Model Family: Random Forest

Pipeline Steps
==============
1. Label Encoder
         * positive_label : None
2. Imputer
         * categorical_impute_strategy : most_frequent
         * numeric_impute_strategy : mean
         * boolean_impute_strategy : most_frequent
         * categorical_fill_value : None
         * numeric_fill_value : None
         * boolean_fill_value : None
3. One Hot Encoder
         * top_n : 10
         * features_to_encode : None
         * categories : None
         * drop : if_binary
         * handle_unknown : ignore
         * handle_missing : error
4. Oversampler
         * sampling_ratio : 0.25
         * k_neighbors_default : 5
         * n_jobs : -1
         * sampling_ratio_dict : None
         * categorical_features : [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
         * k_neighbors : 5
5. Random Forest Classifier
         * n_estimators : 100
         * max_depth : 6
         * n_jobs : -1

Training
========
Training for binary problems.
Objective to optimize binary classification pipeline thresholds for: <evalml.objectives.lead_scoring.LeadScoring object at 0x7ff281f52640>
Total training time (including CV): 3.6 seconds

Cross Validation
----------------
             Lead Scoring   AUC # Training # Validation
0                   2.048 0.720      3,099        1,550
1                   1.116 0.599      3,099        1,550
2                   1.107 0.639      3,100        1,549
mean                1.424 0.652          -            -
std                 0.541 0.062          -            -
coef of var         0.380 0.095          -            -

Evaluate on hold out#

Finally, since the best pipeline was trained on all of the training data, we evaluate it on the holdout dataset.

[10]:
best_pipeline_score = best_pipeline.score(
    X_holdout, y_holdout, objectives=["auc", lead_scoring_objective]
)
best_pipeline_score
[10]:
OrderedDict([('AUC', 0.6356527651858568),
             ('Lead Scoring', 1.3155631986242475)])

Why optimize for a problem-specific objective?#

To demonstrate the importance of optimizing for the right objective, let’s search for another pipeline using AUC, a common machine learning metric. After that, we will score the holdout data using the lead scoring objective to see how the best pipelines compare.

[11]:
automl_auc = evalml.AutoMLSearch(
    X_train=X_train,
    y_train=y_train,
    problem_type="binary",
    objective="auc",
    additional_objectives=[lead_scoring_objective],
    allowed_model_families=["extra_trees", "linear_model"],
    max_batches=3,
    verbose=True,
)

automl_auc.search(interactive_plot=False)
AutoMLSearch will use mean CV score to rank pipelines.

*****************************
* Beginning pipeline search *
*****************************

Optimizing for AUC.
Greater score is better.

Using SequentialEngine to train and score pipelines.
Searching up to 3 batches for a total of None pipelines.
Allowed model families:

Evaluating Baseline Pipeline: Mode Baseline Binary Classification Pipeline
Mode Baseline Binary Classification Pipeline:
        Starting cross validation
        Finished cross validation - mean AUC: 0.500

*****************************
* Evaluating Batch Number 1 *
*****************************

Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + Oversampler:
        Starting cross validation
        Finished cross validation - mean AUC: 0.652

*****************************
* Evaluating Batch Number 2 *
*****************************

Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model:
        Starting cross validation
        Finished cross validation - mean AUC: 0.646

*****************************
* Evaluating Batch Number 3 *
*****************************

Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label Encoder + Imputer + Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder + Oversampler:
        Starting cross validation
        Finished cross validation - mean AUC: 0.653
Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler + Oversampler:
        Starting cross validation
        Finished cross validation - mean AUC: 0.645
Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer + Label Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler + Oversampler:
        Starting cross validation
        Finished cross validation - mean AUC: 0.647

Search finished after 23.66 seconds
Best pipeline: Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label Encoder + Imputer + Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder + Oversampler
Best pipeline AUC: 0.653133
[11]:
{1: {'Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + Oversampler': 4.445448637008667,
  'Total time of batch': 4.570077180862427},
 2: {'Random Forest Classifier w/ Label Encoder + Imputer + One Hot Encoder + Oversampler + RF Classifier Select From Model': 5.078545570373535,
  'Total time of batch': 5.2058820724487305},
 3: {'Extra Trees Classifier w/ Label Encoder + Select Columns By Type Transformer + Label Encoder + Imputer + Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder + Oversampler': 4.583144903182983,
  'Elastic Net Classifier w/ Label Encoder + Select Columns By Type Transformer + Label Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler + Oversampler': 4.195231199264526,
  'Logistic Regression Classifier w/ Label Encoder + Select Columns By Type Transformer + Label Encoder + Imputer + Standard Scaler + Select Columns Transformer + Select Columns Transformer + Label Encoder + Imputer + One Hot Encoder + Standard Scaler + Oversampler': 3.992291212081909,
  'Total time of batch': 13.40848994255066}}
[12]:
automl_auc.rankings
[12]:
id pipeline_name search_order ranking_score mean_cv_score standard_deviation_cv_score percent_better_than_baseline high_variance_cv parameters
0 3 Extra Trees Classifier w/ Label Encoder + Sele... 3 0.653133 0.653133 0.058096 15.313288 False {'Label Encoder': {'positive_label': None}, 'N...
1 1 Random Forest Classifier w/ Label Encoder + Im... 1 0.652452 0.652452 0.061740 15.245206 False {'Label Encoder': {'positive_label': None}, 'I...
2 5 Logistic Regression Classifier w/ Label Encode... 5 0.646823 0.646823 0.043723 14.682289 False {'Label Encoder': {'positive_label': None}, 'N...
3 2 Random Forest Classifier w/ Label Encoder + Im... 2 0.645598 0.645598 0.053493 14.559799 False {'Label Encoder': {'positive_label': None}, 'I...
4 4 Elastic Net Classifier w/ Label Encoder + Sele... 4 0.645471 0.645471 0.042740 14.547088 False {'Label Encoder': {'positive_label': None}, 'N...
5 0 Mode Baseline Binary Classification Pipeline 0 0.500000 0.500000 0.000000 0.000000 False {'Label Encoder': {'positive_label': None}, 'B...

Like before, we can look at the rankings and pick the best pipeline.

[13]:
best_pipeline_auc = automl_auc.best_pipeline
[14]:
# get the AUC and lead scoring score on holdout data
best_pipeline_auc_score = best_pipeline_auc.score(
    X_holdout, y_holdout, objectives=["auc", lead_scoring_objective]
)
best_pipeline_auc_score
[14]:
OrderedDict([('AUC', 0.6407071622846781),
             ('Lead Scoring', 0.21066208082545143)])
[15]:
assert best_pipeline_score["Lead Scoring"] >= best_pipeline_auc_score["Lead Scoring"]
assert best_pipeline_auc_score["Lead Scoring"] >= 0

When we optimize for AUC, we can see that the AUC score from this pipeline is similar to the AUC score from the pipeline optimized for lead scoring. However, the revenue per lead is much smaller per lead when optimized for AUC and was much larger when optimized for lead scoring. As a result, we would have a huge gain on the amount of revenue if we optimized for lead scoring.

This happens because optimizing for AUC does not take into account the user-specified true_positive (dollar amount to be gained with a successful lead) and false_positive (dollar amount to be lost with an unsuccessful lead) values. Thus, the best pipelines may produce the highest AUC but may not actually generate the most revenue through lead scoring.

This example highlights how performance in the real world can diverge greatly from machine learning metrics.