"""Vector Autoregressive Moving Average with eXogenous regressors model. The two parameters (p, q) are the AR order and the MA order. More information here: https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html."""
from typing import Dict, Hashable, List, Optional, Union
import numpy as np
import pandas as pd
from skopt.space import Categorical, Integer
from sktime.forecasting.base import ForecastingHorizon
from evalml.model_family import ModelFamily
from evalml.pipelines.components.estimators import Estimator
from evalml.pipelines.components.utils import convert_bool_to_double, match_indices
from evalml.problem_types import ProblemTypes
from evalml.utils import (
import_or_raise,
infer_feature_types,
)
[docs]class VARMAXRegressor(Estimator):
"""Vector Autoregressive Moving Average with eXogenous regressors model. The two parameters (p, q) are the AR order and the MA order. More information here: https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html.
Currently VARMAXRegressor isn't supported via conda install. It's recommended that it be installed via PyPI.
Args:
time_index (str): Specifies the name of the column in X that provides the datetime objects. Defaults to None.
p (int): Maximum Autoregressive order. Defaults to 1.
q (int): Maximum Moving Average order. Defaults to 0.
trend (str): Controls the deterministic trend. Options are ['n', 'c', 't', 'ct'] where 'c' is a constant term,
't' indicates a linear trend, and 'ct' is both. Can also be an iterable when defining a polynomial, such
as [1, 1, 0, 1].
random_seed (int): Seed for the random number generator. Defaults to 0.
max_iter (int): Maximum number of iterations for solver. Defaults to 10.
use_covariates (bool): If True, will pass exogenous variables in fit/predict methods. If False, forecasts will
solely be based off of the datetimes and target values. Defaults to True.
"""
name = "VARMAX Regressor"
hyperparameter_ranges = {
"p": Integer(0, 10),
"q": Integer(0, 10),
"trend": Categorical(["n", "c", "t", "ct"]),
}
"""{
"p": Integer(1, 10),
"q": Integer(1, 10),
"trend": Categorical(['n', 'c', 't', 'ct']),
}"""
model_family = ModelFamily.VARMAX
is_multiseries = True
"""ModelFamily.VARMAX"""
supported_problem_types = [ProblemTypes.TIME_SERIES_REGRESSION]
"""[ProblemTypes.TIME_SERIES_REGRESSION]"""
def __init__(
self,
time_index: Optional[Hashable] = None,
p: int = 1,
q: int = 0,
trend: Optional[str] = "c",
random_seed: Union[int, float] = 0,
maxiter: int = 10,
use_covariates: bool = True,
**kwargs,
):
self.preds_95_upper = None
self.preds_95_lower = None
parameters = {
"order": (p, q),
"trend": trend,
"maxiter": maxiter,
}
parameters.update(kwargs)
varmax_model_msg = (
"sktime is not installed. Please install using `pip install sktime.`"
)
sktime_varmax = import_or_raise(
"sktime.forecasting.varmax",
error_msg=varmax_model_msg,
)
varmax_model = sktime_varmax.VARMAX(**parameters)
parameters["use_covariates"] = use_covariates
parameters["time_index"] = time_index
self.use_covariates = use_covariates
self.time_index = time_index
super().__init__(
parameters=parameters,
component_obj=varmax_model,
random_seed=random_seed,
)
def _set_forecast_horizon(self, X: pd.DataFrame):
# we can only calculate the difference if the indices are of the same type
units_diff = 1
if isinstance(X.index[0], type(self.last_X_index)):
if isinstance(
X.index,
pd.DatetimeIndex,
):
dates_diff = pd.date_range(
start=self.last_X_index,
end=X.index[0],
freq=X.index.freq,
)
units_diff = len(dates_diff) - 1
elif X.index.is_numeric():
units_diff = X.index[0] - self.last_X_index
fh_ = ForecastingHorizon(
[units_diff + i for i in range(len(X))],
is_relative=True,
)
return fh_
[docs] def fit(self, X: pd.DataFrame, y: Optional[pd.DataFrame] = None):
"""Fits VARMAX regressor to data.
Args:
X (pd.DataFrame): The input training data of shape [n_samples, n_features].
y (pd.DataFrane): The target training data of shape [n_samples, n_series_id_values].
Returns:
self
Raises:
ValueError: If y was not passed in.
"""
X, y = self._manage_woodwork(X, y)
if y is None:
raise ValueError("VARMAX Regressor requires y as input.")
if X is not None and self.use_covariates:
self.last_X_index = X.index[-1]
X = X.ww.select(exclude=["Datetime"])
X = convert_bool_to_double(X)
y = convert_bool_to_double(y)
X, y = match_indices(X, y)
if not X.empty:
self._component_obj.fit(y=y, X=X)
else:
self._component_obj.fit(y=y)
else:
self.last_X_index = y.index[-1]
self._component_obj.fit(y=y)
return self
def _manage_types_and_forecast(self, X: pd.DataFrame) -> tuple:
fh_ = self._set_forecast_horizon(X)
X = X.ww.select(exclude=["Datetime"])
X = convert_bool_to_double(X)
return X, fh_
[docs] def predict(self, X: pd.DataFrame, y: Optional[pd.DataFrame] = None) -> pd.Series:
"""Make predictions using fitted VARMAX regressor.
Args:
X (pd.DataFrame): Data of shape [n_samples, n_features].
y (pd.DataFrame): Target data of shape [n_samples, n_series_id_values].
Returns:
pd.Series: Predicted values.
Raises:
ValueError: If X was passed to `fit` but not passed in `predict`.
"""
X, y = self._manage_woodwork(X, y)
X, fh_ = self._manage_types_and_forecast(X=X)
if not X.empty and self.use_covariates:
if fh_[0] != 1:
# statsmodels (which sktime uses under the hood) only forecasts off the training data
# but sktime circumvents this by predicting everything from the end of training data to the date / periods requested
# and only returning the values for dates / periods given to sktime. Because of this,
# pmdarima requires the number of covariate rows to equal the length of the total number of periods (X.shape[0] == fh_[-1]) if covariates are used.
# We circument this by adding arbitrary rows to the start of X since sktime discards these values when predicting.
num_rows_diff = fh_[-1] - X.shape[0]
filler = pd.DataFrame(
columns=X.columns,
index=range(num_rows_diff),
).fillna(0)
X_ = pd.concat([filler, X], ignore_index=True)
X_.ww.init(schema=X.ww.schema)
else:
X_ = X
y_pred = self._component_obj.predict(
fh=fh_,
X=X_,
)
else:
y_pred = self._component_obj.predict(
fh=fh_,
)
y_pred.index = X.index
return infer_feature_types(y_pred)
[docs] def get_prediction_intervals(
self,
X: pd.DataFrame,
y: pd.DataFrame = None,
coverage: List[float] = None,
predictions: pd.Series = None,
) -> Dict[str, pd.Series]:
"""Find the prediction intervals using the fitted VARMAXRegressor.
Args:
X (pd.DataFrame): Data of shape [n_samples, n_features].
y (pd.DataFrame): Target data of shape [n_samples, n_series_id_values]. Optional.
coverage (list[float]): A list of floats between the values 0 and 1 that the upper and lower bounds of the
prediction interval should be calculated for.
predictions (pd.Series): Not used for VARMAX regressor.
Returns:
dict: Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.
"""
raise NotImplementedError(
"VARMAX does not have prediction intervals implemented yet.",
)
@property
def feature_importance(self) -> np.ndarray:
"""Returns array of 0's with a length of 1 as feature_importance is not defined for VARMAX regressor."""
return np.zeros(1)