encoders =========================================================== .. py:module:: evalml.pipelines.components.transformers.encoders .. autoapi-nested-parse:: Components used to encode the input data. Submodules ---------- .. toctree:: :titlesonly: :maxdepth: 1 label_encoder/index.rst onehot_encoder/index.rst ordinal_encoder/index.rst target_encoder/index.rst Package Contents ---------------- Classes Summary ~~~~~~~~~~~~~~~ .. autoapisummary:: evalml.pipelines.components.transformers.encoders.LabelEncoder evalml.pipelines.components.transformers.encoders.OneHotEncoder evalml.pipelines.components.transformers.encoders.OrdinalEncoder evalml.pipelines.components.transformers.encoders.TargetEncoder Contents ~~~~~~~~~~~~~~~~~~~ .. py:class:: LabelEncoder(positive_label=None, random_seed=0, **kwargs) A transformer that encodes target labels using values between 0 and num_classes - 1. :param positive_label: The label for the class that should be treated as positive (1) for binary classification problems. Ignored for multiclass problems. Defaults to None. :type positive_label: int, str :param random_seed: Seed for the random number generator. Defaults to 0. Ignored. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - {} * - **is_multiseries** - False * - **modifies_features** - False * - **modifies_target** - True * - **name** - Label Encoder * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.transformers.encoders.LabelEncoder.clone evalml.pipelines.components.transformers.encoders.LabelEncoder.default_parameters evalml.pipelines.components.transformers.encoders.LabelEncoder.describe evalml.pipelines.components.transformers.encoders.LabelEncoder.fit evalml.pipelines.components.transformers.encoders.LabelEncoder.fit_transform evalml.pipelines.components.transformers.encoders.LabelEncoder.inverse_transform evalml.pipelines.components.transformers.encoders.LabelEncoder.load evalml.pipelines.components.transformers.encoders.LabelEncoder.needs_fitting evalml.pipelines.components.transformers.encoders.LabelEncoder.parameters evalml.pipelines.components.transformers.encoders.LabelEncoder.save evalml.pipelines.components.transformers.encoders.LabelEncoder.transform evalml.pipelines.components.transformers.encoders.LabelEncoder.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: fit(self, X, y) Fits the label encoder. :param X: The input training data of shape [n_samples, n_features]. Ignored. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series :returns: self :raises ValueError: If input `y` is None. .. py:method:: fit_transform(self, X, y) Fit and transform data using the label encoder. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series :returns: The original features and an encoded version of the target. :rtype: pd.DataFrame, pd.Series .. py:method:: inverse_transform(self, y) Decodes the target data. :param y: Target data. :type y: pd.Series :returns: The decoded version of the target. :rtype: pd.Series :raises ValueError: If input `y` is None. .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: transform(self, X, y=None) Transform the target using the fitted label encoder. :param X: The input training data of shape [n_samples, n_features]. Ignored. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series :returns: The original features and an encoded version of the target. :rtype: pd.DataFrame, pd.Series :raises ValueError: If input `y` is None. .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: OneHotEncoder(top_n=10, features_to_encode=None, categories=None, drop='if_binary', handle_unknown='ignore', handle_missing='error', random_seed=0, **kwargs) A transformer that encodes categorical features in a one-hot numeric array. :param top_n: Number of categories per column to encode. If None, all categories will be encoded. Otherwise, the `n` most frequent will be encoded and all others will be dropped. Defaults to 10. :type top_n: int :param features_to_encode: List of columns to encode. All other columns will remain untouched. If None, all appropriate columns will be encoded. Defaults to None. :type features_to_encode: list[str] :param categories: A two dimensional list of categories, where `categories[i]` is a list of the categories for the column at index `i`. This can also be `None`, or `"auto"` if `top_n` is not None. Defaults to None. :type categories: list :param drop: Method ("first" or "if_binary") to use to drop one category per feature. Can also be a list specifying which categories to drop for each feature. Defaults to 'if_binary'. :type drop: string, list :param handle_unknown: Whether to ignore or error for unknown categories for a feature encountered during `fit` or `transform`. If either `top_n` or `categories` is used to limit the number of categories per column, this must be "ignore". Defaults to "ignore". :type handle_unknown: string :param handle_missing: Options for how to handle missing (NaN) values encountered during `fit` or `transform`. If this is set to "as_category" and NaN values are within the `n` most frequent, "nan" values will be encoded as their own column. If this is set to "error", any missing values encountered will raise an error. Defaults to "error". :type handle_missing: string :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - {} * - **is_multiseries** - False * - **modifies_features** - True * - **modifies_target** - False * - **name** - One Hot Encoder * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.transformers.encoders.OneHotEncoder.categories evalml.pipelines.components.transformers.encoders.OneHotEncoder.clone evalml.pipelines.components.transformers.encoders.OneHotEncoder.default_parameters evalml.pipelines.components.transformers.encoders.OneHotEncoder.describe evalml.pipelines.components.transformers.encoders.OneHotEncoder.fit evalml.pipelines.components.transformers.encoders.OneHotEncoder.fit_transform evalml.pipelines.components.transformers.encoders.OneHotEncoder.get_feature_names evalml.pipelines.components.transformers.encoders.OneHotEncoder.load evalml.pipelines.components.transformers.encoders.OneHotEncoder.needs_fitting evalml.pipelines.components.transformers.encoders.OneHotEncoder.parameters evalml.pipelines.components.transformers.encoders.OneHotEncoder.save evalml.pipelines.components.transformers.encoders.OneHotEncoder.transform evalml.pipelines.components.transformers.encoders.OneHotEncoder.update_parameters .. py:method:: categories(self, feature_name) Returns a list of the unique categories to be encoded for the particular feature, in order. :param feature_name: The name of any feature provided to one-hot encoder during fit. :type feature_name: str :returns: The unique categories, in the same dtype as they were provided during fit. :rtype: np.ndarray :raises ValueError: If feature was not provided to one-hot encoder as a training feature. .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: fit(self, X, y=None) Fits the one-hot encoder component. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series, optional :returns: self :raises ValueError: If encoding a column failed. .. py:method:: fit_transform(self, X, y=None) Fits on X and transforms X. :param X: Data to fit and transform. :type X: pd.DataFrame :param y: Target data. :type y: pd.Series :returns: Transformed X. :rtype: pd.DataFrame :raises MethodPropertyNotFoundError: If transformer does not have a transform method or a component_obj that implements transform. .. py:method:: get_feature_names(self) Return feature names for the categorical features after fitting. Feature names are formatted as {column name}_{category name}. In the event of a duplicate name, an integer will be added at the end of the feature name to distinguish it. For example, consider a dataframe with a column called "A" and category "x_y" and another column called "A_x" with "y". In this example, the feature names would be "A_x_y" and "A_x_y_1". :returns: The feature names after encoding, provided in the same order as input_features. :rtype: np.ndarray .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: transform(self, X, y=None) One-hot encode the input data. :param X: Features to one-hot encode. :type X: pd.DataFrame :param y: Ignored. :type y: pd.Series :returns: Transformed data, where each categorical feature has been encoded into numerical columns using one-hot encoding. :rtype: pd.DataFrame .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: OrdinalEncoder(features_to_encode=None, categories=None, handle_unknown='error', unknown_value=None, encoded_missing_value=None, random_seed=0, **kwargs) A transformer that encodes ordinal features as an array of ordinal integers representing the relative order of categories. :param features_to_encode: List of columns to encode. All other columns will remain untouched. If None, all appropriate columns will be encoded. Defaults to None. The order of columns does not matter. :type features_to_encode: list[str] :param categories: A dictionary mapping column names to their categories in the dataframes passed in at fit and transform. The order of categories specified for a column does not matter. Any category found in the data that is not present in categories will be handled as an unknown value. To not have unknown values raise an error, set handle_unknown to "use_encoded_value". Defaults to None. :type categories: dict[str, list[str]] :param handle_unknown: Whether to ignore or error for unknown categories for a feature encountered during `fit` or `transform`. When set to "error", an error will be raised when an unknown category is found. When set to "use_encoded_value", unknown categories will be encoded as the value given for the parameter unknown_value. Defaults to "error." :type handle_unknown: "error" or "use_encoded_value" :param unknown_value: The value to use for unknown categories seen during fit or transform. Required when the parameter handle_unknown is set to "use_encoded_value." The value has to be distinct from the values used to encode any of the categories in fit. Defaults to None. :type unknown_value: int or np.nan :param encoded_missing_value: The value to use for missing (null) values seen during fit or transform. Defaults to np.nan. :type encoded_missing_value: int or np.nan :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - {} * - **is_multiseries** - False * - **modifies_features** - True * - **modifies_target** - False * - **name** - Ordinal Encoder * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.transformers.encoders.OrdinalEncoder.categories evalml.pipelines.components.transformers.encoders.OrdinalEncoder.clone evalml.pipelines.components.transformers.encoders.OrdinalEncoder.default_parameters evalml.pipelines.components.transformers.encoders.OrdinalEncoder.describe evalml.pipelines.components.transformers.encoders.OrdinalEncoder.fit evalml.pipelines.components.transformers.encoders.OrdinalEncoder.fit_transform evalml.pipelines.components.transformers.encoders.OrdinalEncoder.get_feature_names evalml.pipelines.components.transformers.encoders.OrdinalEncoder.load evalml.pipelines.components.transformers.encoders.OrdinalEncoder.needs_fitting evalml.pipelines.components.transformers.encoders.OrdinalEncoder.parameters evalml.pipelines.components.transformers.encoders.OrdinalEncoder.save evalml.pipelines.components.transformers.encoders.OrdinalEncoder.transform evalml.pipelines.components.transformers.encoders.OrdinalEncoder.update_parameters .. py:method:: categories(self, feature_name) Returns a list of the unique categories to be encoded for the particular feature, in order. :param feature_name: The name of any feature provided to ordinal encoder during fit. :type feature_name: str :returns: The unique categories, in the same dtype as they were provided during fit. :rtype: np.ndarray :raises ValueError: If feature was not provided to ordinal encoder as a training feature. .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: fit(self, X, y=None) Fits the ordinal encoder component. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series, optional :returns: self :raises ValueError: If encoding a column failed. :raises TypeError: If non-Ordinal columns are specified in features_to_encode. .. py:method:: fit_transform(self, X, y=None) Fits on X and transforms X. :param X: Data to fit and transform. :type X: pd.DataFrame :param y: Target data. :type y: pd.Series :returns: Transformed X. :rtype: pd.DataFrame :raises MethodPropertyNotFoundError: If transformer does not have a transform method or a component_obj that implements transform. .. py:method:: get_feature_names(self) Return feature names for the ordinal features after fitting. Feature names are formatted as {column name}_ordinal_encoding. :returns: The feature names after encoding, provided in the same order as input_features. :rtype: np.ndarray .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: transform(self, X, y=None) Ordinally encode the input data. :param X: Features to encode. :type X: pd.DataFrame :param y: Ignored. :type y: pd.Series :returns: Transformed data, where each ordinal feature has been encoded into a numerical column where ordinal integers represent the relative order of categories. :rtype: pd.DataFrame .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional .. py:class:: TargetEncoder(cols=None, smoothing=1, handle_unknown='value', handle_missing='value', random_seed=0, **kwargs) A transformer that encodes categorical features into target encodings. :param cols: Columns to encode. If None, all string columns will be encoded, otherwise only the columns provided will be encoded. Defaults to None :type cols: list :param smoothing: The smoothing factor to apply. The larger this value is, the more influence the expected target value has on the resulting target encodings. Must be strictly larger than 0. Defaults to 1.0 :type smoothing: float :param handle_unknown: Determines how to handle unknown categories for a feature encountered. Options are 'value', 'error', nd 'return_nan'. Defaults to 'value', which replaces with the target mean :type handle_unknown: string :param handle_missing: Determines how to handle missing values encountered during `fit` or `transform`. Options are 'value', 'error', and 'return_nan'. Defaults to 'value', which replaces with the target mean :type handle_missing: string :param random_seed: Seed for the random number generator. Defaults to 0. :type random_seed: int **Attributes** .. list-table:: :widths: 15 85 :header-rows: 0 * - **hyperparameter_ranges** - {} * - **is_multiseries** - False * - **modifies_features** - True * - **modifies_target** - False * - **name** - Target Encoder * - **training_only** - False **Methods** .. autoapisummary:: :nosignatures: evalml.pipelines.components.transformers.encoders.TargetEncoder.clone evalml.pipelines.components.transformers.encoders.TargetEncoder.default_parameters evalml.pipelines.components.transformers.encoders.TargetEncoder.describe evalml.pipelines.components.transformers.encoders.TargetEncoder.fit evalml.pipelines.components.transformers.encoders.TargetEncoder.fit_transform evalml.pipelines.components.transformers.encoders.TargetEncoder.get_feature_names evalml.pipelines.components.transformers.encoders.TargetEncoder.load evalml.pipelines.components.transformers.encoders.TargetEncoder.needs_fitting evalml.pipelines.components.transformers.encoders.TargetEncoder.parameters evalml.pipelines.components.transformers.encoders.TargetEncoder.save evalml.pipelines.components.transformers.encoders.TargetEncoder.transform evalml.pipelines.components.transformers.encoders.TargetEncoder.update_parameters .. py:method:: clone(self) Constructs a new component with the same parameters and random state. :returns: A new instance of this component with identical parameters and random state. .. py:method:: default_parameters(cls) Returns the default parameters for this component. Our convention is that Component.default_parameters == Component().parameters. :returns: Default parameters for this component. :rtype: dict .. py:method:: describe(self, print_name=False, return_dict=False) Describe a component and its parameters. :param print_name: whether to print name of component :type print_name: bool, optional :param return_dict: whether to return description as dictionary in the format {"name": name, "parameters": parameters} :type return_dict: bool, optional :returns: Returns dictionary if return_dict is True, else None. :rtype: None or dict .. py:method:: fit(self, X, y) Fits the target encoder. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series, optional :returns: self .. py:method:: fit_transform(self, X, y) Fit and transform data using the target encoder. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series, optional :returns: Transformed data. :rtype: pd.DataFrame .. py:method:: get_feature_names(self) Return feature names for the input features after fitting. :returns: The feature names after encoding. :rtype: np.array .. py:method:: load(file_path) :staticmethod: Loads component at file path. :param file_path: Location to load file. :type file_path: str :returns: ComponentBase object .. py:method:: needs_fitting(self) Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances. This can be overridden to False for components that do not need to be fit or whose fit methods do nothing. :returns: True. .. py:method:: parameters(self) :property: Returns the parameters which were used to initialize the component. .. py:method:: save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL) Saves component at file path. :param file_path: Location to save file. :type file_path: str :param pickle_protocol: The pickle data stream format. :type pickle_protocol: int .. py:method:: transform(self, X, y=None) Transform data using the fitted target encoder. :param X: The input training data of shape [n_samples, n_features]. :type X: pd.DataFrame :param y: The target training data of length [n_samples]. :type y: pd.Series, optional :returns: Transformed data. :rtype: pd.DataFrame .. py:method:: update_parameters(self, update_dict, reset_fit=True) Updates the parameter dictionary of the component. :param update_dict: A dict of parameters to update. :type update_dict: dict :param reset_fit: If True, will set `_is_fitted` to False. :type reset_fit: bool, optional