Source code for evalml.automl.utils

"""Utilities useful in AutoML."""
from collections import namedtuple

import pandas as pd

from evalml.objectives import get_objective
from evalml.pipelines import (
    BinaryClassificationPipeline,
    MulticlassClassificationPipeline,
    RegressionPipeline,
    TimeSeriesBinaryClassificationPipeline,
    TimeSeriesMulticlassClassificationPipeline,
    TimeSeriesRegressionPipeline,
)
from evalml.preprocessing.data_splitters import (
    KFold,
    StratifiedKFold,
    TimeSeriesSplit,
    TrainingValidationSplit,
)
from evalml.preprocessing.utils import split_data
from evalml.problem_types import (
    ProblemTypes,
    handle_problem_types,
    is_binary,
    is_time_series,
)
from evalml.utils import import_or_raise

_LARGE_DATA_ROW_THRESHOLD = int(1e5)
_SAMPLER_THRESHOLD = 20000
_LARGE_DATA_PERCENT_VALIDATION = 0.75


[docs]def get_default_primary_search_objective(problem_type): """Get the default primary search objective for a problem type. Args: problem_type (str or ProblemType): Problem type of interest. Returns: ObjectiveBase: primary objective instance for the problem type. """ problem_type = handle_problem_types(problem_type) objective_name = { "binary": "Log Loss Binary", "multiclass": "Log Loss Multiclass", "regression": "R2", "time series regression": "MedianAE", "time series binary": "Log Loss Binary", "time series multiclass": "Log Loss Multiclass", "multiseries time series regression": "MedianAE", }[problem_type.value] return get_objective(objective_name, return_instance=True)
[docs]def make_data_splitter( X, y, problem_type, problem_configuration=None, n_splits=3, shuffle=True, random_seed=0, ): """Given the training data and ML problem parameters, compute a data splitting method to use during AutoML search. Args: X (pd.DataFrame): The input training data of shape [n_samples, n_features]. y (pd.Series): The target training data of length [n_samples]. problem_type (ProblemType): The type of machine learning problem. problem_configuration (dict, None): Additional parameters needed to configure the search. For example, in time series problems, values should be passed in for the time_index, gap, and max_delay variables. Defaults to None. n_splits (int, None): The number of CV splits, if applicable. Defaults to 3. shuffle (bool): Whether or not to shuffle the data before splitting, if applicable. Defaults to True. random_seed (int): Seed for the random number generator. Defaults to 0. Returns: sklearn.model_selection.BaseCrossValidator: Data splitting method. Raises: ValueError: If problem_configuration is not given for a time-series problem. """ random_seed = random_seed problem_type = handle_problem_types(problem_type) if is_time_series(problem_type): if not problem_configuration: raise ValueError( "problem_configuration is required for time series problem types", ) series_id = problem_configuration.get("series_id") return TimeSeriesSplit( n_splits=n_splits, gap=problem_configuration.get("gap"), max_delay=problem_configuration.get("max_delay"), time_index=problem_configuration.get("time_index"), forecast_horizon=problem_configuration.get("forecast_horizon"), n_series=len(X[series_id].unique()) if series_id is not None else None, ) if X.shape[0] > _LARGE_DATA_ROW_THRESHOLD: return TrainingValidationSplit( test_size=_LARGE_DATA_PERCENT_VALIDATION, shuffle=shuffle, ) if problem_type == ProblemTypes.REGRESSION: return KFold(n_splits=n_splits, random_state=random_seed, shuffle=shuffle) elif problem_type in [ProblemTypes.BINARY, ProblemTypes.MULTICLASS]: return StratifiedKFold( n_splits=n_splits, random_state=random_seed, shuffle=shuffle, )
[docs]def tune_binary_threshold( pipeline, objective, problem_type, X_threshold_tuning, y_threshold_tuning, X=None, y=None, ): """Tunes the threshold of a binary pipeline to the X and y thresholding data. Args: pipeline (Pipeline): Pipeline instance to threshold. objective (ObjectiveBase): The objective we want to tune with. If not tuneable and best_pipeline is True, will use F1. problem_type (ProblemType): The problem type of the pipeline. X_threshold_tuning (pd.DataFrame): Features to which the pipeline will be tuned. y_threshold_tuning (pd.Series): Target data to which the pipeline will be tuned. X (pd.DataFrame): Features to which the pipeline will be trained (used for time series binary). Defaults to None. y (pd.Series): Target to which the pipeline will be trained (used for time series binary). Defaults to None. """ if ( is_binary(problem_type) and objective.is_defined_for_problem_type(problem_type) and objective.can_optimize_threshold ): pipeline.threshold = 0.5 if X_threshold_tuning is not None: if problem_type == ProblemTypes.TIME_SERIES_BINARY: y_predict_proba = pipeline.predict_proba_in_sample( X_threshold_tuning, y_threshold_tuning, X, y, ) else: y_predict_proba = pipeline.predict_proba(X_threshold_tuning, X, y) y_predict_proba = y_predict_proba.iloc[:, 1] pipeline.optimize_threshold( X_threshold_tuning, y_threshold_tuning, y_predict_proba, objective, )
[docs]def check_all_pipeline_names_unique(pipelines): """Checks whether all the pipeline names are unique. Args: pipelines (list[PipelineBase]): List of pipelines to check if all names are unique. Raises: ValueError: If any pipeline names are duplicated. """ name_count = pd.Series([p.name for p in pipelines]).value_counts() duplicate_names = name_count[name_count > 1].index.tolist() if duplicate_names: plural, tense = ("s", "were") if len(duplicate_names) > 1 else ("", "was") duplicates = ", ".join([f"'{name}'" for name in sorted(duplicate_names)]) raise ValueError( f"All pipeline names must be unique. The name{plural} {duplicates} {tense} repeated.", )
AutoMLConfig = namedtuple( "AutoMLConfig", [ "data_splitter", "problem_type", "objective", "additional_objectives", "alternate_thresholding_objective", "optimize_thresholds", "error_callback", "random_seed", "X_schema", "y_schema", "errors", ], )
[docs]def get_best_sampler_for_data(X, y, sampler_method, sampler_balanced_ratio): """Returns the name of the sampler component to use for AutoMLSearch. Args: X (pd.DataFrame): The input feature data y (pd.Series): The input target data sampler_method (str): The sampler_type argument passed to AutoMLSearch sampler_balanced_ratio (float): The ratio of min:majority targets that we would consider balanced, or should balance the classes to. Returns: str, None: The string name of the sampling component to use, or None if no sampler is necessary """ # we check for the class balances counts = y.value_counts() minority_class = min(counts) class_ratios = minority_class / counts # if all class ratios are larger than the ratio provided, we don't need to sample if all(class_ratios >= sampler_balanced_ratio): return None # We set a threshold to use the Undersampler in order to avoid long runtimes elif len(y) >= _SAMPLER_THRESHOLD and sampler_method != "Oversampler": return "Undersampler" else: try: import_or_raise( "imblearn.over_sampling", error_msg="imbalanced-learn is not installed", ) return "Oversampler" except ImportError: return "Undersampler"
[docs]def get_pipelines_from_component_graphs( component_graphs_dict, problem_type, parameters=None, random_seed=0, ): """Returns created pipelines from passed component graphs based on the specified problem type. Args: component_graphs_dict (dict): The dict of component graphs. problem_type (str or ProblemType): The problem type for which pipelines will be created. parameters (dict): Pipeline-level parameters that should be passed to the proposed pipelines. Defaults to None. random_seed (int): Random seed. Defaults to 0. Returns: list: List of pipelines made from the passed component graphs. """ pipeline_class = { ProblemTypes.BINARY: BinaryClassificationPipeline, ProblemTypes.MULTICLASS: MulticlassClassificationPipeline, ProblemTypes.REGRESSION: RegressionPipeline, ProblemTypes.TIME_SERIES_BINARY: TimeSeriesBinaryClassificationPipeline, ProblemTypes.TIME_SERIES_MULTICLASS: TimeSeriesMulticlassClassificationPipeline, ProblemTypes.TIME_SERIES_REGRESSION: TimeSeriesRegressionPipeline, }[handle_problem_types(problem_type)] created_pipelines = [] for graph_name, component_graph in component_graphs_dict.items(): created_pipelines.append( pipeline_class( component_graph=component_graph, parameters=parameters, custom_name=graph_name, random_seed=random_seed, ), ) return created_pipelines
[docs]def get_threshold_tuning_info(automl_config, pipeline): """Determine for a given automl config and pipeline what the threshold tuning objective should be and whether or not training data should be further split to achieve proper threshold tuning. Can also be used after automl search has been performed to determine whether the full training data was used to train the pipeline. Args: automl_config (AutoMLConfig): The AutoMLSearch's config object. Used to determine threshold tuning objective and whether data needs resplitting. pipeline (Pipeline): The pipeline instance to Threshold. Returns: threshold_tuning_objective, data_needs_resplitting (str, bool) """ threshold_tuning_objective = automl_config.objective if ( is_binary(automl_config.problem_type) and automl_config.optimize_thresholds and automl_config.objective.score_needs_proba and automl_config.alternate_thresholding_objective is not None ): # use the alternate_thresholding_objective threshold_tuning_objective = automl_config.alternate_thresholding_objective return threshold_tuning_objective, ( automl_config.optimize_thresholds and pipeline.can_tune_threshold_with_objective(threshold_tuning_objective) )
[docs]def resplit_training_data(pipeline, X_train, y_train): """Further split the training data for a given pipeline. This is needed for binary pipelines in order to properly tune the threshold. Can be used after automl search has been performed to recreate the data that was used to train a pipeline. Args: pipeline (PipelineBase): the pipeline whose training data we are splitting X_train (pd.DataFrame or np.ndarray): training data of shape [n_samples, n_features] y_train (pd.Series, or np.ndarray): training target data of length [n_samples] Returns: pd.DataFrame, pd.DataFrame, pd.Series, pd.Series: Feature and target data each split into train and threshold tuning sets. """ test_size_ = ( pipeline.forecast_horizon / len(X_train) if is_time_series(pipeline.problem_type) else 0.2 ) train_and_tuning_data = split_data( X_train, y_train, pipeline.problem_type, test_size=test_size_, random_seed=pipeline.random_seed, ) return train_and_tuning_data