Source code for evalml.pipelines.components.ensemble.stacked_ensemble_base
"""Stacked Ensemble Base."""
from evalml.model_family import ModelFamily
from evalml.pipelines.components import Estimator
from evalml.utils import classproperty
_nonstackable_model_families = [
ModelFamily.BASELINE,
ModelFamily.VOWPAL_WABBIT,
ModelFamily.NONE,
]
[docs]class StackedEnsembleBase(Estimator):
"""Stacked Ensemble Base Class.
Arguments:
final_estimator (Estimator or subclass): The estimator used to combine the base estimators.
n_jobs (int or None): Integer describing level of parallelism used for pipelines. None and 1 are equivalent.
If set to -1, all CPUs are used. For n_jobs greater than -1, (n_cpus + 1 + n_jobs) are used. Defaults to -1.
- Note: there could be some multi-process errors thrown for values of `n_jobs != 1`. If this is the case, please use `n_jobs = 1`.
random_seed (int): Seed for the random number generator. Defaults to 0.
"""
model_family = ModelFamily.ENSEMBLE
"""ModelFamily.ENSEMBLE"""
_default_final_estimator = None
_can_be_used_for_fast_partial_dependence = False
def __init__(
self,
final_estimator=None,
n_jobs=-1,
random_seed=0,
**kwargs,
):
final_estimator = final_estimator or self._default_final_estimator()
parameters = {
"final_estimator": final_estimator,
"n_jobs": n_jobs,
}
parameters.update(kwargs)
super().__init__(
parameters=parameters,
component_obj=final_estimator,
random_seed=random_seed,
)
@property
def feature_importance(self):
"""Not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor."""
raise NotImplementedError(
"feature_importance is not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor",
)
@classproperty
def default_parameters(cls):
"""Returns the default parameters for stacked ensemble classes.
Returns:
dict: default parameters for this component.
"""
return {
"final_estimator": cls._default_final_estimator,
"n_jobs": -1,
}