Source code for evalml.pipelines.components.ensemble.stacked_ensemble_regressor
"""Stacked Ensemble Regressor."""
from evalml.model_family import ModelFamily
from evalml.pipelines.components import ElasticNetRegressor
from evalml.pipelines.components.ensemble import StackedEnsembleBase
from evalml.problem_types import ProblemTypes
[docs]class StackedEnsembleRegressor(StackedEnsembleBase):
"""Stacked Ensemble Regressor.
Arguments:
final_estimator (Estimator or subclass): The regressor used to combine the base estimators. If None, uses ElasticNetRegressor.
n_jobs (int or None): Integer describing level of parallelism used for pipelines. None and 1 are equivalent.
If set to -1, all CPUs are used. For n_jobs greater than -1, (n_cpus + 1 + n_jobs) are used. Defaults to -1.
- Note: there could be some multi-process errors thrown for values of `n_jobs != 1`. If this is the case, please use `n_jobs = 1`.
random_seed (int): Seed for the random number generator. Defaults to 0.
Example:
>>> from evalml.pipelines.component_graph import ComponentGraph
>>> from evalml.pipelines.components.estimators.regressors.rf_regressor import RandomForestRegressor
>>> from evalml.pipelines.components.estimators.regressors.elasticnet_regressor import ElasticNetRegressor
...
>>> component_graph = {
... "Random Forest": [RandomForestRegressor(random_seed=3), "X", "y"],
... "Random Forest B": [RandomForestRegressor(random_seed=4), "X", "y"],
... "Stacked Ensemble": [
... StackedEnsembleRegressor(n_jobs=1, final_estimator=RandomForestRegressor()),
... "Random Forest.x",
... "Random Forest B.x",
... "y",
... ],
... }
...
>>> cg = ComponentGraph(component_graph)
>>> assert cg.default_parameters == {
... 'Random Forest Regressor': {'n_estimators': 100,
... 'max_depth': 6,
... 'n_jobs': -1},
... 'Stacked Ensemble Regressor': {'final_estimator': ElasticNetRegressor,
... 'n_jobs': -1}}
"""
name = "Stacked Ensemble Regressor"
model_family = ModelFamily.ENSEMBLE
"""ModelFamily.ENSEMBLE"""
supported_problem_types = [
ProblemTypes.REGRESSION,
ProblemTypes.TIME_SERIES_REGRESSION,
]
"""[
ProblemTypes.REGRESSION,
ProblemTypes.TIME_SERIES_REGRESSION,
]"""
hyperparameter_ranges = {}
"""{}"""
_default_final_estimator = ElasticNetRegressor