Source code for evalml.pipelines.components.ensemble.stacked_ensemble_regressor

"""Stacked Ensemble Regressor."""
from evalml.model_family import ModelFamily
from evalml.pipelines.components import ElasticNetRegressor
from evalml.pipelines.components.ensemble import StackedEnsembleBase
from evalml.problem_types import ProblemTypes


[docs]class StackedEnsembleRegressor(StackedEnsembleBase): """Stacked Ensemble Regressor. Arguments: final_estimator (Estimator or subclass): The regressor used to combine the base estimators. If None, uses ElasticNetRegressor. n_jobs (int or None): Integer describing level of parallelism used for pipelines. None and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs greater than -1, (n_cpus + 1 + n_jobs) are used. Defaults to -1. - Note: there could be some multi-process errors thrown for values of `n_jobs != 1`. If this is the case, please use `n_jobs = 1`. random_seed (int): Seed for the random number generator. Defaults to 0. Example: >>> from evalml.pipelines.component_graph import ComponentGraph >>> from evalml.pipelines.components.estimators.regressors.rf_regressor import RandomForestRegressor >>> from evalml.pipelines.components.estimators.regressors.elasticnet_regressor import ElasticNetRegressor ... >>> component_graph = { ... "Random Forest": [RandomForestRegressor(random_seed=3), "X", "y"], ... "Random Forest B": [RandomForestRegressor(random_seed=4), "X", "y"], ... "Stacked Ensemble": [ ... StackedEnsembleRegressor(n_jobs=1, final_estimator=RandomForestRegressor()), ... "Random Forest.x", ... "Random Forest B.x", ... "y", ... ], ... } ... >>> cg = ComponentGraph(component_graph) >>> assert cg.default_parameters == { ... 'Random Forest Regressor': {'n_estimators': 100, ... 'max_depth': 6, ... 'n_jobs': -1}, ... 'Stacked Ensemble Regressor': {'final_estimator': ElasticNetRegressor, ... 'n_jobs': -1}} """ name = "Stacked Ensemble Regressor" model_family = ModelFamily.ENSEMBLE """ModelFamily.ENSEMBLE""" supported_problem_types = [ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, ] """[ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, ]""" hyperparameter_ranges = {} """{}""" _default_final_estimator = ElasticNetRegressor