Source code for evalml.pipelines.components.transformers.preprocessing.lsa

"""Transformer to calculate the Latent Semantic Analysis Values of text input."""
import pandas as pd
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.pipeline import make_pipeline

from evalml.pipelines.components.transformers.preprocessing import TextTransformer
from evalml.utils import infer_feature_types


[docs]class LSA(TextTransformer): """Transformer to calculate the Latent Semantic Analysis Values of text input. Args: random_seed (int): Seed for the random number generator. Defaults to 0. """ name = "LSA Transformer" hyperparameter_ranges = {} """{}""" def __init__(self, random_seed=0, **kwargs): self._lsa_pipeline = make_pipeline( TfidfVectorizer(), TruncatedSVD(random_state=random_seed), ) self._provenance = {} super().__init__(random_seed=random_seed, **kwargs)
[docs] def fit(self, X, y=None): """Fits the input data. Args: X (pd.DataFrame): The data to transform. y (pd.Series, optional): Ignored. Returns: self """ X = infer_feature_types(X) self._text_columns = self._get_text_columns(X) if len(self._text_columns) == 0: return self corpus = X[self._text_columns].values.flatten() # we assume non-str values will have been filtered out prior to calling LSA.fit. this is a safeguard. corpus = corpus.astype(str) self._lsa_pipeline.fit(corpus) return self
[docs] def transform(self, X, y=None): """Transforms data X by applying the LSA pipeline. Args: X (pd.DataFrame): The data to transform. y (pd.Series, optional): Ignored. Returns: pd.DataFrame: Transformed X. The original column is removed and replaced with two columns of the format `LSA(original_column_name)[feature_number]`, where `feature_number` is 0 or 1. """ X_ww = infer_feature_types(X) if len(self._text_columns) == 0: return X_ww provenance = {} for col in self._text_columns: transformed = self._lsa_pipeline.transform(X_ww[col]) X_ww.ww["LSA({})[0]".format(col)] = pd.Series( transformed[:, 0], index=X_ww.index, ) X_ww.ww["LSA({})[1]".format(col)] = pd.Series( transformed[:, 1], index=X_ww.index, ) provenance[col] = ["LSA({})[0]".format(col), "LSA({})[1]".format(col)] self._provenance = provenance X_t = X_ww.ww.drop(columns=self._text_columns) return X_t
def _get_feature_provenance(self): return self._provenance