Source code for evalml.tuners.skopt_tuner
"""Bayesian Optimizer."""
import logging
import warnings
import pandas as pd
from skopt import Optimizer
from evalml.tuners.tuner import Tuner
from evalml.tuners.tuner_exceptions import ParameterError
logger = logging.getLogger(__name__)
[docs]class SKOptTuner(Tuner):
"""Bayesian Optimizer.
Args:
pipeline_hyperparameter_ranges (dict): A set of hyperparameter ranges corresponding to a pipeline's parameters.
random_seed (int): The seed for the random number generator. Defaults to 0.
Examples:
>>> tuner = SKOptTuner({'My Component': {'param a': [0.0, 10.0], 'param b': ['a', 'b', 'c']}})
>>> proposal = tuner.propose()
...
>>> assert proposal.keys() == {'My Component'}
>>> assert proposal['My Component'] == {'param a': 5.928446182250184, 'param b': 'c'}
Determines points using a Bayesian Optimizer approach.
>>> for each in range(7):
... print(tuner.propose())
{'My Component': {'param a': 8.57945617622757, 'param b': 'c'}}
{'My Component': {'param a': 6.235636967859724, 'param b': 'b'}}
{'My Component': {'param a': 2.9753460654447235, 'param b': 'a'}}
{'My Component': {'param a': 2.7265629458011325, 'param b': 'b'}}
{'My Component': {'param a': 8.121687287754932, 'param b': 'b'}}
{'My Component': {'param a': 3.927847961008298, 'param b': 'c'}}
{'My Component': {'param a': 3.3739616041726843, 'param b': 'b'}}
"""
def __init__(self, pipeline_hyperparameter_ranges, random_seed=0):
super().__init__(pipeline_hyperparameter_ranges, random_seed=random_seed)
self.opt = Optimizer(
self._search_space_ranges,
"GBRT",
acq_optimizer="sampling",
random_state=random_seed,
)
[docs] def add(self, pipeline_parameters, score):
"""Add score to sample.
Args:
pipeline_parameters (dict): A dict of the parameters used to evaluate a pipeline
score (float): The score obtained by evaluating the pipeline with the provided parameters
Returns:
None
Raises:
Exception: If skopt tuner errors.
ParameterError: If skopt receives invalid parameters.
"""
# skip adding nan scores
if pd.isnull(score):
return
flat_parameter_values = self._convert_to_flat_parameters(pipeline_parameters)
try:
self.opt.tell(flat_parameter_values, score)
except Exception as e:
logger.debug(
"SKOpt tuner received error during add. Score: {}\nParameters: {}\nFlat parameter values: {}\nError: {}".format(
pipeline_parameters,
score,
flat_parameter_values,
e,
),
)
if str(e) == "'<=' not supported between instances of 'int' and 'NoneType'":
msg = "Invalid parameters specified to SKOptTuner.add: parameters {} error {}".format(
pipeline_parameters,
str(e),
)
logger.error(msg)
raise ParameterError(msg)
raise (e)
[docs] def propose(self):
"""Returns a suggested set of parameters to train and score a pipeline with, based off the search space dimensions and prior samples.
Returns:
dict: Proposed pipeline parameters.
"""
with warnings.catch_warnings():
warnings.simplefilter("ignore")
if not len(self._search_space_ranges):
return self._convert_to_pipeline_parameters({})
flat_parameters = self.opt.ask()
return self._convert_to_pipeline_parameters(flat_parameters)