sparsity_data_check#
Data check that checks if there are any columns with sparsely populated values in the input.
Module Contents#
Classes Summary#
Check if there are any columns with sparsely populated values in the input. |
Attributes Summary#
Contents#
- class evalml.data_checks.sparsity_data_check.SparsityDataCheck(problem_type, threshold, unique_count_threshold=10)[source]#
Check if there are any columns with sparsely populated values in the input.
- Parameters
problem_type (str or ProblemTypes) – The specific problem type to data check for. ‘multiclass’ or ‘time series multiclass’ is the only accepted problem type.
threshold (float) – The threshold value, or percentage of each column’s unique values, below which, a column exhibits sparsity. Should be between 0 and 1.
unique_count_threshold (int) – The minimum number of times a unique value has to be present in a column to not be considered “sparse.” Defaults to 10.
Methods
Return a name describing the data check.
Calculate a sparsity score for the given value counts by calculating the percentage of unique values that exceed the count_threshold.
Calculate what percentage of each column's unique values exceed the count threshold and compare that percentage to the sparsity threshold stored in the class instance.
- name(cls)#
Return a name describing the data check.
- static sparsity_score(col, count_threshold=10)[source]#
Calculate a sparsity score for the given value counts by calculating the percentage of unique values that exceed the count_threshold.
- Parameters
col (pd.Series) – Feature values.
count_threshold (int) – The number of instances below which a value is considered sparse. Default is 10.
- Returns
Sparsity score, or the percentage of the unique values that exceed count_threshold.
- Return type
(float)
- validate(self, X, y=None)[source]#
Calculate what percentage of each column’s unique values exceed the count threshold and compare that percentage to the sparsity threshold stored in the class instance.
- Parameters
X (pd.DataFrame, np.ndarray) – Features.
y (pd.Series, np.ndarray) – Ignored.
- Returns
dict with a DataCheckWarning if there are any sparse columns.
- Return type
dict
Examples
>>> import pandas as pd
For multiclass problems, if a column doesn’t have enough representation from unique values, it will be considered sparse.
>>> df = pd.DataFrame({ ... "sparse": [float(x) for x in range(100)], ... "not_sparse": [float(1) for x in range(100)] ... }) ... >>> sparsity_check = SparsityDataCheck(problem_type="multiclass", threshold=0.5, unique_count_threshold=10) >>> assert sparsity_check.validate(df) == [ ... { ... "message": "Input columns ('sparse') for multiclass problem type are too sparse.", ... "data_check_name": "SparsityDataCheck", ... "level": "warning", ... "code": "TOO_SPARSE", ... "details": { ... "columns": ["sparse"], ... "sparsity_score": {"sparse": 0.0}, ... "rows": None ... }, ... "action_options": [ ... { ... "code": "DROP_COL", ... "data_check_name": "SparsityDataCheck", ... "parameters": {}, ... "metadata": {"columns": ["sparse"], "rows": None} ... } ... ] ... } ... ]
… >>> df[“sparse”] = [float(x % 10) for x in range(100)] >>> sparsity_check = SparsityDataCheck(problem_type=”multiclass”, threshold=1, unique_count_threshold=5) >>> assert sparsity_check.validate(df) == [] … >>> sparse_array = pd.Series([1, 1, 1, 2, 2, 3] * 3) >>> assert SparsityDataCheck.sparsity_score(sparse_array, count_threshold=5) == 0.6666666666666666
- evalml.data_checks.sparsity_data_check.warning_too_unique = Input columns ({}) for {} problem type are too sparse.#