stacked_ensemble_classifier#

Stacked Ensemble Classifier.

Module Contents#

Classes Summary#

StackedEnsembleClassifier

Stacked Ensemble Classifier.

Contents#

class evalml.pipelines.components.ensemble.stacked_ensemble_classifier.StackedEnsembleClassifier(final_estimator=None, n_jobs=- 1, random_seed=0, **kwargs)[source]#

Stacked Ensemble Classifier.

Parameters
  • final_estimator (Estimator or subclass) – The classifier used to combine the base estimators. If None, uses ElasticNetClassifier.

  • n_jobs (int or None) – Integer describing level of parallelism used for pipelines. None and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Defaults to -1. - Note: there could be some multi-process errors thrown for values of n_jobs != 1. If this is the case, please use n_jobs = 1.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Example

>>> from evalml.pipelines.component_graph import ComponentGraph
>>> from evalml.pipelines.components.estimators.classifiers.decision_tree_classifier import DecisionTreeClassifier
>>> from evalml.pipelines.components.estimators.classifiers.elasticnet_classifier import ElasticNetClassifier
...
>>> component_graph = {
...     "Decision Tree": [DecisionTreeClassifier(random_seed=3), "X", "y"],
...     "Decision Tree B": [DecisionTreeClassifier(random_seed=4), "X", "y"],
...     "Stacked Ensemble": [
...         StackedEnsembleClassifier(n_jobs=1, final_estimator=DecisionTreeClassifier()),
...         "Decision Tree.x",
...         "Decision Tree B.x",
...         "y",
...     ],
... }
...
>>> cg = ComponentGraph(component_graph)
>>> assert cg.default_parameters == {
...     'Decision Tree Classifier': {'criterion': 'gini',
...                                  'max_features': 'sqrt',
...                                  'max_depth': 6,
...                                  'min_samples_split': 2,
...                                  'min_weight_fraction_leaf': 0.0},
...     'Stacked Ensemble Classifier': {'final_estimator': ElasticNetClassifier,
...                                     'n_jobs': -1}}

Attributes

hyperparameter_ranges

{}

model_family

ModelFamily.ENSEMBLE

modifies_features

True

modifies_target

False

name

Stacked Ensemble Classifier

supported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

training_only

False

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for stacked ensemble classes.

describe

Describe a component and its parameters.

feature_importance

Not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor.

fit

Fits estimator to data.

get_prediction_intervals

Find the prediction intervals using the fitted regressor.

load

Loads component at file path.

needs_fitting

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

parameters

Returns the parameters which were used to initialize the component.

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path.

update_parameters

Updates the parameter dictionary of the component.

clone(self)#

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)#

Returns the default parameters for stacked ensemble classes.

Returns

default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)#

Describe a component and its parameters.

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

Returns dictionary if return_dict is True, else None.

Return type

None or dict

property feature_importance(self)#

Not implemented for StackedEnsembleClassifier and StackedEnsembleRegressor.

fit(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None)#

Fits estimator to data.

Parameters
  • X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

  • y (pd.Series, optional) – The target training data of length [n_samples].

Returns

self

get_prediction_intervals(self, X: pandas.DataFrame, y: Optional[pandas.Series] = None, coverage: List[float] = None, predictions: pandas.Series = None) Dict[str, pandas.Series]#

Find the prediction intervals using the fitted regressor.

This function takes the predictions of the fitted estimator and calculates the rolling standard deviation across all predictions using a window size of 5. The lower and upper predictions are determined by taking the percent point (quantile) function of the lower tail probability at each bound multiplied by the rolling standard deviation.

Parameters
  • X (pd.DataFrame) – Data of shape [n_samples, n_features].

  • y (pd.Series) – Target data. Ignored.

  • coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for.

  • predictions (pd.Series) – Optional list of predictions to use. If None, will generate predictions using X.

Returns

Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.

Return type

dict

Raises

MethodPropertyNotFoundError – If the estimator does not support Time Series Regression as a problem type.

static load(file_path)#

Loads component at file path.

Parameters

file_path (str) – Location to load file.

Returns

ComponentBase object

needs_fitting(self)#

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns

True.

property parameters(self)#

Returns the parameters which were used to initialize the component.

predict(self, X: pandas.DataFrame) pandas.Series#

Make predictions using selected features.

Parameters

X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns

Predicted values.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict method or a component_obj that implements predict.

predict_proba(self, X: pandas.DataFrame) pandas.Series#

Make probability estimates for labels.

Parameters

X (pd.DataFrame) – Features.

Returns

Probability estimates.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict_proba method or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#

Saves component at file path.

Parameters
  • file_path (str) – Location to save file.

  • pickle_protocol (int) – The pickle data stream format.

update_parameters(self, update_dict, reset_fit=True)#

Updates the parameter dictionary of the component.

Parameters
  • update_dict (dict) – A dict of parameters to update.

  • reset_fit (bool, optional) – If True, will set _is_fitted to False.