feature_selection#
Components that select features.
Submodules#
Package Contents#
Classes Summary#
Selects top features based on importance weights. |
|
Selects relevant features using recursive feature elimination with a Random Forest Classifier. |
|
Selects top features based on importance weights using a Random Forest classifier. |
|
Selects relevant features using recursive feature elimination with a Random Forest Regressor. |
|
Selects top features based on importance weights using a Random Forest regressor. |
Contents#
- class evalml.pipelines.components.transformers.feature_selection.FeatureSelector(parameters=None, component_obj=None, random_seed=0, **kwargs)[source]#
Selects top features based on importance weights.
- Parameters
parameters (dict) – Dictionary of parameters for the component. Defaults to None.
component_obj (obj) – Third-party objects useful in component implementation. Defaults to None.
random_seed (int) – Seed for the random number generator. Defaults to 0.
Attributes
modifies_features
True
modifies_target
False
training_only
False
Methods
Constructs a new component with the same parameters and random state.
Returns the default parameters for this component.
Describe a component and its parameters.
Fits component to data.
Fit and transform data using the feature selector.
Get names of selected features.
Loads component at file path.
Returns string name of this component.
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.
Returns the parameters which were used to initialize the component.
Saves component at file path.
Transforms input data by selecting features. If the component_obj does not have a transform method, will raise an MethodPropertyNotFoundError exception.
Updates the parameter dictionary of the component.
- clone(self)#
Constructs a new component with the same parameters and random state.
- Returns
A new instance of this component with identical parameters and random state.
- default_parameters(cls)#
Returns the default parameters for this component.
Our convention is that Component.default_parameters == Component().parameters.
- Returns
Default parameters for this component.
- Return type
dict
- describe(self, print_name=False, return_dict=False)#
Describe a component and its parameters.
- Parameters
print_name (bool, optional) – whether to print name of component
return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}
- Returns
Returns dictionary if return_dict is True, else None.
- Return type
None or dict
- fit(self, X, y=None)#
Fits component to data.
- Parameters
X (pd.DataFrame) – The input training data of shape [n_samples, n_features]
y (pd.Series, optional) – The target training data of length [n_samples]
- Returns
self
- Raises
MethodPropertyNotFoundError – If component does not have a fit method or a component_obj that implements fit.
- fit_transform(self, X, y=None)[source]#
Fit and transform data using the feature selector.
- Parameters
X (pd.DataFrame) – The input training data of shape [n_samples, n_features].
y (pd.Series, optional) – The target training data of length [n_samples].
- Returns
Transformed data.
- Return type
pd.DataFrame
- get_names(self)[source]#
Get names of selected features.
- Returns
List of the names of features selected.
- Return type
list[str]
- static load(file_path)#
Loads component at file path.
- Parameters
file_path (str) – Location to load file.
- Returns
ComponentBase object
- property name(cls)#
Returns string name of this component.
- needs_fitting(self)#
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.
This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
- Returns
True.
- property parameters(self)#
Returns the parameters which were used to initialize the component.
- save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#
Saves component at file path.
- Parameters
file_path (str) – Location to save file.
pickle_protocol (int) – The pickle data stream format.
- transform(self, X, y=None)[source]#
Transforms input data by selecting features. If the component_obj does not have a transform method, will raise an MethodPropertyNotFoundError exception.
- Parameters
X (pd.DataFrame) – Data to transform.
y (pd.Series, optional) – Target data. Ignored.
- Returns
Transformed X
- Return type
pd.DataFrame
- Raises
MethodPropertyNotFoundError – If feature selector does not have a transform method or a component_obj that implements transform
- update_parameters(self, update_dict, reset_fit=True)#
Updates the parameter dictionary of the component.
- Parameters
update_dict (dict) – A dict of parameters to update.
reset_fit (bool, optional) – If True, will set _is_fitted to False.
- class evalml.pipelines.components.transformers.feature_selection.RFClassifierRFESelector(step=0.2, min_features_to_select=1, cv=None, scoring=None, n_jobs=-1, n_estimators=10, max_depth=None, random_seed=0, **kwargs)[source]#
Selects relevant features using recursive feature elimination with a Random Forest Classifier.
- Parameters
step (int, float) – The number of features to eliminate in each iteration. If an integer is specified this will represent the number of features to eliminate. If a float is specified this represents the percentage of features to eliminate each iteration. The last iteration may drop fewer than this number of features in order to satisfy the min_features_to_select constraint. Defaults to 0.2.
min_features_to_select (int) – The minimum number of features to return. Defaults to 1.
cv (int or None) – Number of folds to use for the cross-validation splitting strategy. Defaults to None which will use 5 folds.
scoring (str, callable or None) – A string or scorer callable object to specify the scoring method.
n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults to -1.
n_estimators (int) – The number of trees in the forest. Defaults to 10.
max_depth (int) – Maximum tree depth for base learners. Defaults to None.
random_seed (int) – Seed for the random number generator. Defaults to 0.
Attributes
hyperparameter_ranges
{ “step”: Real(0.05, 0.25)}
modifies_features
True
modifies_target
False
name
RFE Selector with RF Classifier
training_only
False
Methods
Constructs a new component with the same parameters and random state.
Returns the default parameters for this component.
Describe a component and its parameters.
Fits component to data.
Fit and transform data using the feature selector.
Get names of selected features.
Loads component at file path.
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.
Returns the parameters which were used to initialize the component.
Saves component at file path.
Transforms input data by selecting features. If the component_obj does not have a transform method, will raise an MethodPropertyNotFoundError exception.
Updates the parameter dictionary of the component.
- clone(self)#
Constructs a new component with the same parameters and random state.
- Returns
A new instance of this component with identical parameters and random state.
- default_parameters(cls)#
Returns the default parameters for this component.
Our convention is that Component.default_parameters == Component().parameters.
- Returns
Default parameters for this component.
- Return type
dict
- describe(self, print_name=False, return_dict=False)#
Describe a component and its parameters.
- Parameters
print_name (bool, optional) – whether to print name of component
return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}
- Returns
Returns dictionary if return_dict is True, else None.
- Return type
None or dict
- fit(self, X, y=None)#
Fits component to data.
- Parameters
X (pd.DataFrame) – The input training data of shape [n_samples, n_features]
y (pd.Series, optional) – The target training data of length [n_samples]
- Returns
self
- Raises
MethodPropertyNotFoundError – If component does not have a fit method or a component_obj that implements fit.
- fit_transform(self, X, y=None)#
Fit and transform data using the feature selector.
- Parameters
X (pd.DataFrame) – The input training data of shape [n_samples, n_features].
y (pd.Series, optional) – The target training data of length [n_samples].
- Returns
Transformed data.
- Return type
pd.DataFrame
- get_names(self)#
Get names of selected features.
- Returns
List of the names of features selected.
- Return type
list[str]
- static load(file_path)#
Loads component at file path.
- Parameters
file_path (str) – Location to load file.
- Returns
ComponentBase object
- needs_fitting(self)#
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.
This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
- Returns
True.
- property parameters(self)#
Returns the parameters which were used to initialize the component.
- save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#
Saves component at file path.
- Parameters
file_path (str) – Location to save file.
pickle_protocol (int) – The pickle data stream format.
- transform(self, X, y=None)#
Transforms input data by selecting features. If the component_obj does not have a transform method, will raise an MethodPropertyNotFoundError exception.
- Parameters
X (pd.DataFrame) – Data to transform.
y (pd.Series, optional) – Target data. Ignored.
- Returns
Transformed X
- Return type
pd.DataFrame
- Raises
MethodPropertyNotFoundError – If feature selector does not have a transform method or a component_obj that implements transform
- update_parameters(self, update_dict, reset_fit=True)#
Updates the parameter dictionary of the component.
- Parameters
update_dict (dict) – A dict of parameters to update.
reset_fit (bool, optional) – If True, will set _is_fitted to False.
- class evalml.pipelines.components.transformers.feature_selection.RFClassifierSelectFromModel(number_features=None, n_estimators=10, max_depth=None, percent_features=0.5, threshold='median', n_jobs=-1, random_seed=0, **kwargs)[source]#
Selects top features based on importance weights using a Random Forest classifier.
- Parameters
number_features (int) – The maximum number of features to select. If both percent_features and number_features are specified, take the greater number of features. Defaults to None.
n_estimators (int) – The number of trees in the forest. Defaults to 10.
max_depth (int) – Maximum tree depth for base learners. Defaults to None.
percent_features (float) – Percentage of features to use. If both percent_features and number_features are specified, take the greater number of features. Defaults to 0.5.
threshold (string or float) – The threshold value to use for feature selection. Features whose importance is greater or equal are kept while the others are discarded. If “median”, then the threshold value is the median of the feature importances. A scaling factor (e.g., “1.25*mean”) may also be used. Defaults to median.
n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults to -1.
random_seed (int) – Seed for the random number generator. Defaults to 0.
Attributes
hyperparameter_ranges
{ “percent_features”: Real(0.01, 1), “threshold”: [“mean”, “median”],}
modifies_features
True
modifies_target
False
name
RF Classifier Select From Model
training_only
False
Methods
Constructs a new component with the same parameters and random state.
Returns the default parameters for this component.
Describe a component and its parameters.
Fits component to data.
Fit and transform data using the feature selector.
Get names of selected features.
Loads component at file path.
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.
Returns the parameters which were used to initialize the component.
Saves component at file path.
Transforms input data by selecting features. If the component_obj does not have a transform method, will raise an MethodPropertyNotFoundError exception.
Updates the parameter dictionary of the component.
- clone(self)#
Constructs a new component with the same parameters and random state.
- Returns
A new instance of this component with identical parameters and random state.
- default_parameters(cls)#
Returns the default parameters for this component.
Our convention is that Component.default_parameters == Component().parameters.
- Returns
Default parameters for this component.
- Return type
dict
- describe(self, print_name=False, return_dict=False)#
Describe a component and its parameters.
- Parameters
print_name (bool, optional) – whether to print name of component
return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}
- Returns
Returns dictionary if return_dict is True, else None.
- Return type
None or dict
- fit(self, X, y=None)#
Fits component to data.
- Parameters
X (pd.DataFrame) – The input training data of shape [n_samples, n_features]
y (pd.Series, optional) – The target training data of length [n_samples]
- Returns
self
- Raises
MethodPropertyNotFoundError – If component does not have a fit method or a component_obj that implements fit.
- fit_transform(self, X, y=None)#
Fit and transform data using the feature selector.
- Parameters
X (pd.DataFrame) – The input training data of shape [n_samples, n_features].
y (pd.Series, optional) – The target training data of length [n_samples].
- Returns
Transformed data.
- Return type
pd.DataFrame
- get_names(self)#
Get names of selected features.
- Returns
List of the names of features selected.
- Return type
list[str]
- static load(file_path)#
Loads component at file path.
- Parameters
file_path (str) – Location to load file.
- Returns
ComponentBase object
- needs_fitting(self)#
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.
This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
- Returns
True.
- property parameters(self)#
Returns the parameters which were used to initialize the component.
- save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#
Saves component at file path.
- Parameters
file_path (str) – Location to save file.
pickle_protocol (int) – The pickle data stream format.
- transform(self, X, y=None)#
Transforms input data by selecting features. If the component_obj does not have a transform method, will raise an MethodPropertyNotFoundError exception.
- Parameters
X (pd.DataFrame) – Data to transform.
y (pd.Series, optional) – Target data. Ignored.
- Returns
Transformed X
- Return type
pd.DataFrame
- Raises
MethodPropertyNotFoundError – If feature selector does not have a transform method or a component_obj that implements transform
- update_parameters(self, update_dict, reset_fit=True)#
Updates the parameter dictionary of the component.
- Parameters
update_dict (dict) – A dict of parameters to update.
reset_fit (bool, optional) – If True, will set _is_fitted to False.
- class evalml.pipelines.components.transformers.feature_selection.RFRegressorRFESelector(step=0.2, min_features_to_select=1, cv=None, scoring=None, n_jobs=-1, n_estimators=10, max_depth=None, random_seed=0, **kwargs)[source]#
Selects relevant features using recursive feature elimination with a Random Forest Regressor.
- Parameters
step (int, float) – The number of features to eliminate in each iteration. If an integer is specified this will represent the number of features to eliminate. If a float is specified this represents the percentage of features to eliminate each iteration. The last iteration may drop fewer than this number of features in order to satisfy the min_features_to_select constraint. Defaults to 0.2.
min_features_to_select (int) – The minimum number of features to return. Defaults to 1.
cv (int or None) – Number of folds to use for the cross-validation splitting strategy. Defaults to None which will use 5 folds.
scoring (str, callable or None) – A string or scorer callable object to specify the scoring method.
n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults to -1.
n_estimators (int) – The number of trees in the forest. Defaults to 10.
max_depth (int) – Maximum tree depth for base learners. Defaults to None.
random_seed (int) – Seed for the random number generator. Defaults to 0.
Attributes
hyperparameter_ranges
{ “step”: Real(0.05, 0.25)}
modifies_features
True
modifies_target
False
name
RFE Selector with RF Regressor
training_only
False
Methods
Constructs a new component with the same parameters and random state.
Returns the default parameters for this component.
Describe a component and its parameters.
Fits component to data.
Fit and transform data using the feature selector.
Get names of selected features.
Loads component at file path.
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.
Returns the parameters which were used to initialize the component.
Saves component at file path.
Transforms input data by selecting features. If the component_obj does not have a transform method, will raise an MethodPropertyNotFoundError exception.
Updates the parameter dictionary of the component.
- clone(self)#
Constructs a new component with the same parameters and random state.
- Returns
A new instance of this component with identical parameters and random state.
- default_parameters(cls)#
Returns the default parameters for this component.
Our convention is that Component.default_parameters == Component().parameters.
- Returns
Default parameters for this component.
- Return type
dict
- describe(self, print_name=False, return_dict=False)#
Describe a component and its parameters.
- Parameters
print_name (bool, optional) – whether to print name of component
return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}
- Returns
Returns dictionary if return_dict is True, else None.
- Return type
None or dict
- fit(self, X, y=None)#
Fits component to data.
- Parameters
X (pd.DataFrame) – The input training data of shape [n_samples, n_features]
y (pd.Series, optional) – The target training data of length [n_samples]
- Returns
self
- Raises
MethodPropertyNotFoundError – If component does not have a fit method or a component_obj that implements fit.
- fit_transform(self, X, y=None)#
Fit and transform data using the feature selector.
- Parameters
X (pd.DataFrame) – The input training data of shape [n_samples, n_features].
y (pd.Series, optional) – The target training data of length [n_samples].
- Returns
Transformed data.
- Return type
pd.DataFrame
- get_names(self)#
Get names of selected features.
- Returns
List of the names of features selected.
- Return type
list[str]
- static load(file_path)#
Loads component at file path.
- Parameters
file_path (str) – Location to load file.
- Returns
ComponentBase object
- needs_fitting(self)#
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.
This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
- Returns
True.
- property parameters(self)#
Returns the parameters which were used to initialize the component.
- save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#
Saves component at file path.
- Parameters
file_path (str) – Location to save file.
pickle_protocol (int) – The pickle data stream format.
- transform(self, X, y=None)#
Transforms input data by selecting features. If the component_obj does not have a transform method, will raise an MethodPropertyNotFoundError exception.
- Parameters
X (pd.DataFrame) – Data to transform.
y (pd.Series, optional) – Target data. Ignored.
- Returns
Transformed X
- Return type
pd.DataFrame
- Raises
MethodPropertyNotFoundError – If feature selector does not have a transform method or a component_obj that implements transform
- update_parameters(self, update_dict, reset_fit=True)#
Updates the parameter dictionary of the component.
- Parameters
update_dict (dict) – A dict of parameters to update.
reset_fit (bool, optional) – If True, will set _is_fitted to False.
- class evalml.pipelines.components.transformers.feature_selection.RFRegressorSelectFromModel(number_features=None, n_estimators=10, max_depth=None, percent_features=0.5, threshold='median', n_jobs=-1, random_seed=0, **kwargs)[source]#
Selects top features based on importance weights using a Random Forest regressor.
- Parameters
number_features (int) – The maximum number of features to select. If both percent_features and number_features are specified, take the greater number of features. Defaults to 0.5.
n_estimators (int) – The number of trees in the forest. Defaults to 10.
max_depth (int) – Maximum tree depth for base learners. Defaults to None.
percent_features (float) – Percentage of features to use. If both percent_features and number_features are specified, take the greater number of features. Defaults to 0.5.
threshold (string or float) – The threshold value to use for feature selection. Features whose importance is greater or equal are kept while the others are discarded. If “median”, then the threshold value is the median of the feature importances. A scaling factor (e.g., “1.25*mean”) may also be used. Defaults to median.
n_jobs (int or None) – Number of jobs to run in parallel. -1 uses all processes. Defaults to -1.
random_seed (int) – Seed for the random number generator. Defaults to 0.
Attributes
hyperparameter_ranges
{ “percent_features”: Real(0.01, 1), “threshold”: [“mean”, “median”],}
modifies_features
True
modifies_target
False
name
RF Regressor Select From Model
training_only
False
Methods
Constructs a new component with the same parameters and random state.
Returns the default parameters for this component.
Describe a component and its parameters.
Fits component to data.
Fit and transform data using the feature selector.
Get names of selected features.
Loads component at file path.
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.
Returns the parameters which were used to initialize the component.
Saves component at file path.
Transforms input data by selecting features. If the component_obj does not have a transform method, will raise an MethodPropertyNotFoundError exception.
Updates the parameter dictionary of the component.
- clone(self)#
Constructs a new component with the same parameters and random state.
- Returns
A new instance of this component with identical parameters and random state.
- default_parameters(cls)#
Returns the default parameters for this component.
Our convention is that Component.default_parameters == Component().parameters.
- Returns
Default parameters for this component.
- Return type
dict
- describe(self, print_name=False, return_dict=False)#
Describe a component and its parameters.
- Parameters
print_name (bool, optional) – whether to print name of component
return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}
- Returns
Returns dictionary if return_dict is True, else None.
- Return type
None or dict
- fit(self, X, y=None)#
Fits component to data.
- Parameters
X (pd.DataFrame) – The input training data of shape [n_samples, n_features]
y (pd.Series, optional) – The target training data of length [n_samples]
- Returns
self
- Raises
MethodPropertyNotFoundError – If component does not have a fit method or a component_obj that implements fit.
- fit_transform(self, X, y=None)#
Fit and transform data using the feature selector.
- Parameters
X (pd.DataFrame) – The input training data of shape [n_samples, n_features].
y (pd.Series, optional) – The target training data of length [n_samples].
- Returns
Transformed data.
- Return type
pd.DataFrame
- get_names(self)#
Get names of selected features.
- Returns
List of the names of features selected.
- Return type
list[str]
- static load(file_path)#
Loads component at file path.
- Parameters
file_path (str) – Location to load file.
- Returns
ComponentBase object
- needs_fitting(self)#
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.
This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
- Returns
True.
- property parameters(self)#
Returns the parameters which were used to initialize the component.
- save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#
Saves component at file path.
- Parameters
file_path (str) – Location to save file.
pickle_protocol (int) – The pickle data stream format.
- transform(self, X, y=None)#
Transforms input data by selecting features. If the component_obj does not have a transform method, will raise an MethodPropertyNotFoundError exception.
- Parameters
X (pd.DataFrame) – Data to transform.
y (pd.Series, optional) – Target data. Ignored.
- Returns
Transformed X
- Return type
pd.DataFrame
- Raises
MethodPropertyNotFoundError – If feature selector does not have a transform method or a component_obj that implements transform
- update_parameters(self, update_dict, reset_fit=True)#
Updates the parameter dictionary of the component.
- Parameters
update_dict (dict) – A dict of parameters to update.
reset_fit (bool, optional) – If True, will set _is_fitted to False.