evalml.pipelines.roc_curve¶
-
evalml.pipelines.
roc_curve
(y_true, y_pred_proba)[source]¶ Given labels and binary classifier predicted probabilities, compute and return the data representing a Receiver Operating Characteristic (ROC) curve.
- Parameters
y_true (pd.Series or np.array) – true binary labels.
y_pred_proba (pd.Series or np.array) – predictions from a binary classifier, before thresholding has been applied. Note this should be the predicted probability for the “true” label.
- Returns
- Dictionary containing metrics used to generate an ROC plot, with the following keys:
fpr_rates: False positive rates.
tpr_rates: True positive rates.
thresholds: Threshold values used to produce each pair of true/false positive rates.
auc_score: The area under the ROC curve.
- Return type
dict