evalml.pipelines.components.LightGBMRegressor¶
-
class
evalml.pipelines.components.
LightGBMRegressor
(boosting_type='gbdt', learning_rate=0.1, n_estimators=20, max_depth=0, num_leaves=31, min_child_samples=20, n_jobs=- 1, random_seed=0, bagging_fraction=0.9, bagging_freq=0, **kwargs)[source]¶ LightGBM Regressor
-
name
= 'LightGBM Regressor'¶
-
model_family
= 'lightgbm'¶
-
supported_problem_types
= [<ProblemTypes.REGRESSION: 'regression'>]¶
-
hyperparameter_ranges
= {'bagging_fraction': Real(low=1e-06, high=1, prior='uniform', transform='identity'), 'bagging_freq': Integer(low=0, high=1, prior='uniform', transform='identity'), 'boosting_type': ['gbdt', 'dart', 'goss', 'rf'], 'learning_rate': Real(low=1e-06, high=1, prior='uniform', transform='identity'), 'max_depth': Integer(low=0, high=10, prior='uniform', transform='identity'), 'min_child_samples': Integer(low=1, high=100, prior='uniform', transform='identity'), 'n_estimators': Integer(low=10, high=100, prior='uniform', transform='identity'), 'num_leaves': Integer(low=2, high=100, prior='uniform', transform='identity')}¶
-
default_parameters
= {'bagging_fraction': 0.9, 'bagging_freq': 0, 'boosting_type': 'gbdt', 'learning_rate': 0.1, 'max_depth': 0, 'min_child_samples': 20, 'n_estimators': 20, 'n_jobs': -1, 'num_leaves': 31}¶
-
predict_uses_y
= False¶
Instance attributes
SEED_MAX
SEED_MIN
feature_importance
Returns importance associated with each feature.
needs_fitting
parameters
Returns the parameters which were used to initialize the component
Methods:
Initialize self.
Constructs a new component with the same parameters and random state.
Describe a component and its parameters
Fits component to data
Loads component at file path
Make predictions using selected features.
Make probability estimates for labels.
Saves component at file path
-