evalml.pipelines.components.SimpleImputer¶
-
class
evalml.pipelines.components.
SimpleImputer
(impute_strategy='most_frequent', fill_value=None, random_seed=0, **kwargs)[source]¶ Imputes missing data according to a specified imputation strategy.
-
name
= 'Simple Imputer'¶
-
model_family
= 'none'¶
-
hyperparameter_ranges
= {'impute_strategy': ['mean', 'median', 'most_frequent']}¶
-
default_parameters
= {'fill_value': None, 'impute_strategy': 'most_frequent'}¶
Instance attributes
needs_fitting
parameters
Returns the parameters which were used to initialize the component
Methods:
Initalizes an transformer that imputes missing data according to the specified imputation strategy.”
Constructs a new component with the same parameters and random state.
Describe a component and its parameters
Fits imputer to data. ‘None’ values are converted to np.nan before imputation and are
Fits on X and transforms X
Loads component at file path
Saves component at file path
Transforms input by imputing missing values.
-