Source code for evalml.pipelines.components.estimators.regressors.elasticnet_regressor

from sklearn.linear_model import ElasticNet as SKElasticNet
from skopt.space import Real

from evalml.model_family import ModelFamily
from evalml.pipelines.components.estimators import Estimator
from evalml.problem_types import ProblemTypes


[docs]class ElasticNetRegressor(Estimator): """Elastic Net Regressor.""" name = "Elastic Net Regressor" hyperparameter_ranges = { "alpha": Real(0, 1), "l1_ratio": Real(0, 1), } model_family = ModelFamily.LINEAR_MODEL supported_problem_types = [ ProblemTypes.REGRESSION, ProblemTypes.TIME_SERIES_REGRESSION, ]
[docs] def __init__( self, alpha=0.0001, l1_ratio=0.15, max_iter=1000, normalize=False, random_seed=0, **kwargs ): parameters = { "alpha": alpha, "l1_ratio": l1_ratio, "max_iter": max_iter, "normalize": normalize, } parameters.update(kwargs) en_regressor = SKElasticNet(random_state=random_seed, **parameters) super().__init__( parameters=parameters, component_obj=en_regressor, random_seed=random_seed )
@property def feature_importance(self): return self._component_obj.coef_