evalml.pipelines.components.ElasticNetRegressor¶
-
class
evalml.pipelines.components.
ElasticNetRegressor
(alpha=0.0001, l1_ratio=0.15, max_iter=1000, normalize=False, random_seed=0, **kwargs)[source]¶ Elastic Net Regressor.
-
name
= 'Elastic Net Regressor'¶
-
model_family
= 'linear_model'¶
-
supported_problem_types
= [<ProblemTypes.REGRESSION: 'regression'>, <ProblemTypes.TIME_SERIES_REGRESSION: 'time series regression'>]¶
-
hyperparameter_ranges
= {'alpha': Real(low=0, high=1, prior='uniform', transform='identity'), 'l1_ratio': Real(low=0, high=1, prior='uniform', transform='identity')}¶
-
default_parameters
= {'alpha': 0.0001, 'l1_ratio': 0.15, 'max_iter': 1000, 'normalize': False}¶
-
predict_uses_y
= False¶
Instance attributes
feature_importance
Return an attribute of instance, which is of type owner.
needs_fitting
parameters
Returns the parameters which were used to initialize the component
Methods:
Initialize self.
Constructs a new component with the same parameters and random state.
Describe a component and its parameters
Fits component to data
Loads component at file path
Make predictions using selected features.
Make probability estimates for labels.
Saves component at file path
-