evalml.pipelines.components.ExtraTreesClassifier¶
-
class
evalml.pipelines.components.
ExtraTreesClassifier
(n_estimators=100, max_features='auto', max_depth=6, min_samples_split=2, min_weight_fraction_leaf=0.0, n_jobs=- 1, random_seed=0, **kwargs)[source]¶ Extra Trees Classifier.
-
name
= 'Extra Trees Classifier'¶
-
model_family
= 'extra_trees'¶
-
supported_problem_types
= [<ProblemTypes.BINARY: 'binary'>, <ProblemTypes.MULTICLASS: 'multiclass'>, <ProblemTypes.TIME_SERIES_BINARY: 'time series binary'>, <ProblemTypes.TIME_SERIES_MULTICLASS: 'time series multiclass'>]¶
-
hyperparameter_ranges
= {'max_depth': Integer(low=4, high=10, prior='uniform', transform='identity'), 'max_features': ['auto', 'sqrt', 'log2'], 'n_estimators': Integer(low=10, high=1000, prior='uniform', transform='identity')}¶
-
default_parameters
= {'max_depth': 6, 'max_features': 'auto', 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': -1}¶
-
predict_uses_y
= False¶
Instance attributes
feature_importance
Returns importance associated with each feature.
needs_fitting
parameters
Returns the parameters which were used to initialize the component
Methods:
Initialize self.
Constructs a new component with the same parameters and random state.
Describe a component and its parameters
Fits component to data
Loads component at file path
Make predictions using selected features.
Make probability estimates for labels.
Saves component at file path
-