import numpy as np
from sklearn.svm import SVR
from skopt.space import Real
from evalml.model_family import ModelFamily
from evalml.pipelines.components.estimators import Estimator
from evalml.problem_types import ProblemTypes
[docs]class SVMRegressor(Estimator):
"""Support Vector Machine Regressor."""
name = "SVM Regressor"
hyperparameter_ranges = {
"C": Real(0, 10),
"kernel": ["linear", "poly", "rbf", "sigmoid", "precomputed"],
"gamma": ["scale", "auto"],
}
model_family = ModelFamily.SVM
supported_problem_types = [
ProblemTypes.REGRESSION,
ProblemTypes.TIME_SERIES_REGRESSION,
]
[docs] def __init__(self, C=1.0, kernel="rbf", gamma="scale", random_seed=0, **kwargs):
parameters = {"C": C, "kernel": kernel, "gamma": gamma}
parameters.update(kwargs)
# SVR doesn't take a random_state arg
svm_regressor = SVR(**parameters)
super().__init__(
parameters=parameters, component_obj=svm_regressor, random_seed=random_seed
)
@property
def feature_importance(self):
"""Feature importance only works with linear kernels.
If the kernel isn't linear, we return a numpy array of zeros
"""
if self._parameters["kernel"] != "linear":
return np.zeros(self._component_obj.n_features_in_)
else:
return self._component_obj.coef_