evalml.pipelines.components.SVMRegressor¶
-
class
evalml.pipelines.components.
SVMRegressor
(C=1.0, kernel='rbf', gamma='scale', random_seed=0, **kwargs)[source]¶ Support Vector Machine Regressor.
-
name
= 'SVM Regressor'¶
-
model_family
= 'svm'¶
-
supported_problem_types
= [<ProblemTypes.REGRESSION: 'regression'>, <ProblemTypes.TIME_SERIES_REGRESSION: 'time series regression'>]¶
-
hyperparameter_ranges
= {'C': Real(low=0, high=10, prior='uniform', transform='identity'), 'gamma': ['scale', 'auto'], 'kernel': ['linear', 'poly', 'rbf', 'sigmoid', 'precomputed']}¶
-
default_parameters
= {'C': 1.0, 'gamma': 'scale', 'kernel': 'rbf'}¶
-
predict_uses_y
= False¶
Instance attributes
feature_importance
Feature importance only works with linear kernels.
needs_fitting
parameters
Returns the parameters which were used to initialize the component
Methods:
Initialize self.
Constructs a new component with the same parameters and random state.
Describe a component and its parameters
Fits component to data
Loads component at file path
Make predictions using selected features.
Make probability estimates for labels.
Saves component at file path
-