evalml.pipelines.components.DateTimeFeaturizer¶
-
class
evalml.pipelines.components.
DateTimeFeaturizer
(features_to_extract=None, encode_as_categories=False, date_index=None, random_seed=0, **kwargs)[source]¶ Transformer that can automatically featurize DateTime columns.
-
name
= 'DateTime Featurization Component'¶
-
model_family
= 'none'¶
-
hyperparameter_ranges
= {}¶
-
default_parameters
= {'date_index': None, 'encode_as_categories': False, 'features_to_extract': ['year', 'month', 'day_of_week', 'hour']}¶
Instance attributes
needs_fitting
parameters
Returns the parameters which were used to initialize the component
Methods:
Extracts features from DateTime columns
Constructs a new component with the same parameters and random state.
Describe a component and its parameters
Fits component to data
Fits on X and transforms X
Gets the categories of each datetime feature.
Loads component at file path
Saves component at file path
Transforms data X by creating new features using existing DateTime columns, and then dropping those DateTime columns
-