evalml.pipelines.components.RandomForestRegressor¶
-
class
evalml.pipelines.components.
RandomForestRegressor
(n_estimators=100, max_depth=6, n_jobs=- 1, random_seed=0, **kwargs)[source]¶ Random Forest Regressor.
-
name
= 'Random Forest Regressor'¶
-
model_family
= 'random_forest'¶
-
supported_problem_types
= [<ProblemTypes.REGRESSION: 'regression'>, <ProblemTypes.TIME_SERIES_REGRESSION: 'time series regression'>]¶
-
hyperparameter_ranges
= {'max_depth': Integer(low=1, high=32, prior='uniform', transform='identity'), 'n_estimators': Integer(low=10, high=1000, prior='uniform', transform='identity')}¶
-
default_parameters
= {'max_depth': 6, 'n_estimators': 100, 'n_jobs': -1}¶
-
predict_uses_y
= False¶
Instance attributes
feature_importance
Returns importance associated with each feature.
needs_fitting
parameters
Returns the parameters which were used to initialize the component
Methods:
Initialize self.
Constructs a new component with the same parameters and random state.
Describe a component and its parameters
Fits component to data
Loads component at file path
Make predictions using selected features.
Make probability estimates for labels.
Saves component at file path
-