kneighbors_classifier

K-Nearest Neighbors Classifier.

Module Contents

Classes Summary

KNeighborsClassifier

K-Nearest Neighbors Classifier.

Contents

class evalml.pipelines.components.estimators.classifiers.kneighbors_classifier.KNeighborsClassifier(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, random_seed=0, **kwargs)[source]

K-Nearest Neighbors Classifier.

Parameters
  • n_neighbors (int) – Number of neighbors to use by default. Defaults to 5.

  • weights ({‘uniform’, ‘distance’} or callable) –

    Weight function used in prediction. Can be:

    • ‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

    • ‘distance’ : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away.

    • [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights.

    Defaults to “uniform”.

  • algorithm ({‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}) –

    Algorithm used to compute the nearest neighbors:

    • ‘ball_tree’ will use BallTree

    • ‘kd_tree’ will use KDTree

    • ‘brute’ will use a brute-force search.

    ‘auto’ will attempt to decide the most appropriate algorithm based on the values passed to fit method. Defaults to “auto”. Note: fitting on sparse input will override the setting of this parameter, using brute force.

  • leaf_size (int) – Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. Defaults to 30.

  • p (int) – Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. Defaults to 2.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{ “n_neighbors”: Integer(2, 12), “weights”: [“uniform”, “distance”], “algorithm”: [“auto”, “ball_tree”, “kd_tree”, “brute”], “leaf_size”: Integer(10, 30), “p”: Integer(1, 5),}

model_family

ModelFamily.K_NEIGHBORS

modifies_features

True

modifies_target

False

name

KNN Classifier

predict_uses_y

False

supported_problem_types

[ ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS,]

training_only

False

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters.

feature_importance

Returns array of 0’s matching the input number of features as feature_importance is not defined for KNN classifiers.

fit

Fits estimator to data.

load

Loads component at file path.

needs_fitting

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

parameters

Returns the parameters which were used to initialize the component.

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves component at file path.

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

Default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters.

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

Returns dictionary if return_dict is True, else None.

Return type

None or dict

property feature_importance(self)

Returns array of 0’s matching the input number of features as feature_importance is not defined for KNN classifiers.

fit(self, X, y=None)

Fits estimator to data.

Parameters
  • X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

  • y (pd.Series, optional) – The target training data of length [n_samples].

Returns

self

static load(file_path)

Loads component at file path.

Parameters

file_path (str) – Location to load file.

Returns

ComponentBase object

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns

True.

property parameters(self)

Returns the parameters which were used to initialize the component.

predict(self, X)

Make predictions using selected features.

Parameters

X (pd.DataFrame) – Data of shape [n_samples, n_features].

Returns

Predicted values.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict method or a component_obj that implements predict.

predict_proba(self, X)

Make probability estimates for labels.

Parameters

X (pd.DataFrame) – Features.

Returns

Probability estimates.

Return type

pd.Series

Raises

MethodPropertyNotFoundError – If estimator does not have a predict_proba method or a component_obj that implements predict_proba.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path.

Parameters
  • file_path (str) – Location to save file.

  • pickle_protocol (int) – The pickle data stream format.