column_selectors

Initalizes an transformer that selects specified columns in input data.

Module Contents

Classes Summary

ColumnSelector

Initalizes an transformer that selects specified columns in input data.

DropColumns

Drops specified columns in input data.

SelectByType

Selects columns by specified Woodwork logical type or semantic tag in input data.

SelectColumns

Selects specified columns in input data.

Contents

class evalml.pipelines.components.transformers.column_selectors.ColumnSelector(columns=None, random_seed=0, **kwargs)[source]

Initalizes an transformer that selects specified columns in input data.

Parameters
  • columns (list(string)) – List of column names, used to determine which columns to select.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

modifies_features

True

modifies_target

False

training_only

False

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters.

fit

Fits the transformer by checking if column names are present in the dataset.

fit_transform

Fits on X and transforms X.

load

Loads component at file path.

name

Returns string name of this component.

needs_fitting

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

parameters

Returns the parameters which were used to initialize the component.

save

Saves component at file path.

transform

Transform data using fitted column selector component.

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

Default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters.

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

Returns dictionary if return_dict is True, else None.

Return type

None or dict

fit(self, X, y=None)[source]

Fits the transformer by checking if column names are present in the dataset.

Parameters
  • X (pd.DataFrame) – Data to check.

  • y (pd.Series, optional) – Targets.

Returns

self

fit_transform(self, X, y=None)

Fits on X and transforms X.

Parameters
  • X (pd.DataFrame) – Data to fit and transform.

  • y (pd.Series) – Target data.

Returns

Transformed X.

Return type

pd.DataFrame

Raises

MethodPropertyNotFoundError – If transformer does not have a transform method or a component_obj that implements transform.

static load(file_path)

Loads component at file path.

Parameters

file_path (str) – Location to load file.

Returns

ComponentBase object

property name(cls)

Returns string name of this component.

needs_fitting(self)

Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.

This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.

Returns

True.

property parameters(self)

Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path.

Parameters
  • file_path (str) – Location to save file.

  • pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)[source]

Transform data using fitted column selector component.

Parameters
  • X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

  • y (pd.Series, optional) – The target training data of length [n_samples].

Returns

Transformed data.

Return type

pd.DataFrame

class evalml.pipelines.components.transformers.column_selectors.DropColumns(columns=None, random_seed=0, **kwargs)[source]

Drops specified columns in input data.

Parameters
  • columns (list(string)) – List of column names, used to determine which columns to drop.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{}

modifies_features

True

modifies_target

False

name

Drop Columns Transformer

needs_fitting

False

training_only

False

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters.

fit

Fits the transformer by checking if column names are present in the dataset.

fit_transform

Fits on X and transforms X.

load

Loads component at file path.

parameters

Returns the parameters which were used to initialize the component.

save

Saves component at file path.

transform

Transforms data X by dropping columns.

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

Default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters.

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

Returns dictionary if return_dict is True, else None.

Return type

None or dict

fit(self, X, y=None)

Fits the transformer by checking if column names are present in the dataset.

Parameters
  • X (pd.DataFrame) – Data to check.

  • y (pd.Series, optional) – Targets.

Returns

self

fit_transform(self, X, y=None)

Fits on X and transforms X.

Parameters
  • X (pd.DataFrame) – Data to fit and transform.

  • y (pd.Series) – Target data.

Returns

Transformed X.

Return type

pd.DataFrame

Raises

MethodPropertyNotFoundError – If transformer does not have a transform method or a component_obj that implements transform.

static load(file_path)

Loads component at file path.

Parameters

file_path (str) – Location to load file.

Returns

ComponentBase object

property parameters(self)

Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path.

Parameters
  • file_path (str) – Location to save file.

  • pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)[source]

Transforms data X by dropping columns.

Parameters
  • X (pd.DataFrame) – Data to transform.

  • y (pd.Series, optional) – Targets.

Returns

Transformed X.

Return type

pd.DataFrame

class evalml.pipelines.components.transformers.column_selectors.SelectByType(column_types=None, random_seed=0, **kwargs)[source]

Selects columns by specified Woodwork logical type or semantic tag in input data.

Parameters
  • column_types (string, ww.LogicalType, list(string), list(ww.LogicalType)) – List of Woodwork types or tags, used to determine which columns to select.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{}

modifies_features

True

modifies_target

False

name

Select Columns By Type Transformer

needs_fitting

False

training_only

False

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters.

fit

Fits the transformer by checking if column names are present in the dataset.

fit_transform

Fits on X and transforms X.

load

Loads component at file path.

parameters

Returns the parameters which were used to initialize the component.

save

Saves component at file path.

transform

Transforms data X by selecting columns.

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

Default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters.

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

Returns dictionary if return_dict is True, else None.

Return type

None or dict

fit(self, X, y=None)

Fits the transformer by checking if column names are present in the dataset.

Parameters
  • X (pd.DataFrame) – Data to check.

  • y (pd.Series, optional) – Targets.

Returns

self

fit_transform(self, X, y=None)

Fits on X and transforms X.

Parameters
  • X (pd.DataFrame) – Data to fit and transform.

  • y (pd.Series) – Target data.

Returns

Transformed X.

Return type

pd.DataFrame

Raises

MethodPropertyNotFoundError – If transformer does not have a transform method or a component_obj that implements transform.

static load(file_path)

Loads component at file path.

Parameters

file_path (str) – Location to load file.

Returns

ComponentBase object

property parameters(self)

Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path.

Parameters
  • file_path (str) – Location to save file.

  • pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)[source]

Transforms data X by selecting columns.

Parameters
  • X (pd.DataFrame) – Data to transform.

  • y (pd.Series, optional) – Targets.

Returns

Transformed X.

Return type

pd.DataFrame

class evalml.pipelines.components.transformers.column_selectors.SelectColumns(columns=None, random_seed=0, **kwargs)[source]

Selects specified columns in input data.

Parameters
  • columns (list(string)) – List of column names, used to determine which columns to select. If columns are not present, they will not be selected.

  • random_seed (int) – Seed for the random number generator. Defaults to 0.

Attributes

hyperparameter_ranges

{}

modifies_features

True

modifies_target

False

name

Select Columns Transformer

needs_fitting

False

training_only

False

Methods

clone

Constructs a new component with the same parameters and random state.

default_parameters

Returns the default parameters for this component.

describe

Describe a component and its parameters.

fit

Fits the transformer by checking if column names are present in the dataset.

fit_transform

Fits on X and transforms X.

load

Loads component at file path.

parameters

Returns the parameters which were used to initialize the component.

save

Saves component at file path.

transform

Transform data using fitted column selector component.

clone(self)

Constructs a new component with the same parameters and random state.

Returns

A new instance of this component with identical parameters and random state.

default_parameters(cls)

Returns the default parameters for this component.

Our convention is that Component.default_parameters == Component().parameters.

Returns

Default parameters for this component.

Return type

dict

describe(self, print_name=False, return_dict=False)

Describe a component and its parameters.

Parameters
  • print_name (bool, optional) – whether to print name of component

  • return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}

Returns

Returns dictionary if return_dict is True, else None.

Return type

None or dict

fit(self, X, y=None)[source]

Fits the transformer by checking if column names are present in the dataset.

Parameters
  • X (pd.DataFrame) – Data to check.

  • y (pd.Series, optional) – Targets.

Returns

self

fit_transform(self, X, y=None)

Fits on X and transforms X.

Parameters
  • X (pd.DataFrame) – Data to fit and transform.

  • y (pd.Series) – Target data.

Returns

Transformed X.

Return type

pd.DataFrame

Raises

MethodPropertyNotFoundError – If transformer does not have a transform method or a component_obj that implements transform.

static load(file_path)

Loads component at file path.

Parameters

file_path (str) – Location to load file.

Returns

ComponentBase object

property parameters(self)

Returns the parameters which were used to initialize the component.

save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)

Saves component at file path.

Parameters
  • file_path (str) – Location to save file.

  • pickle_protocol (int) – The pickle data stream format.

transform(self, X, y=None)

Transform data using fitted column selector component.

Parameters
  • X (pd.DataFrame) – The input training data of shape [n_samples, n_features].

  • y (pd.Series, optional) – The target training data of length [n_samples].

Returns

Transformed data.

Return type

pd.DataFrame