from sklearn.preprocessing import StandardScaler as SkScaler
from evalml.pipelines.components import ComponentTypes
from evalml.pipelines.components.transformers import Transformer
[docs]class StandardScaler(Transformer):
"""Standardize features: removes mean and scales to unit variance"""
name = "Standard Scaler"
component_type = ComponentTypes.SCALER
_needs_fitting = True
hyperparameter_ranges = {}
[docs] def __init__(self):
parameters = {}
scaler = SkScaler()
super().__init__(parameters=parameters,
component_obj=scaler,
random_state=0)