from skopt.space import Real
from evalml.model_types import ModelTypes
from evalml.pipelines import PipelineBase
from evalml.pipelines.components import (
LogisticRegressionClassifier,
OneHotEncoder,
SimpleImputer,
StandardScaler
)
from evalml.problem_types import ProblemTypes
[docs]class LogisticRegressionPipeline(PipelineBase):
"""Logistic Regression Pipeline for both binary and multiclass classification"""
name = "Logistic Regression Classifier w/ One Hot Encoder + Simple Imputer + Standard Scaler"
model_type = ModelTypes.LINEAR_MODEL
problem_types = [ProblemTypes.BINARY, ProblemTypes.MULTICLASS]
hyperparameters = {
"penalty": ["l2"],
"C": Real(.01, 10),
"impute_strategy": ["mean", "median", "most_frequent"],
}
[docs] def __init__(self, objective, penalty, C, impute_strategy,
number_features, n_jobs=-1, random_state=0):
imputer = SimpleImputer(impute_strategy=impute_strategy)
enc = OneHotEncoder()
scaler = StandardScaler()
estimator = LogisticRegressionClassifier(random_state=random_state,
penalty=penalty,
C=C,
n_jobs=n_jobs)
super().__init__(objective=objective,
component_list=[enc, imputer, scaler, estimator],
n_jobs=n_jobs,
random_state=random_state)