varmax_regressor#
Vector Autoregressive Moving Average with eXogenous regressors model. The two parameters (p, q) are the AR order and the MA order. More information here: https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html.
Module Contents#
Classes Summary#
Vector Autoregressive Moving Average with eXogenous regressors model. The two parameters (p, q) are the AR order and the MA order. More information here: https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html. |
Contents#
- class evalml.pipelines.components.estimators.regressors.varmax_regressor.VARMAXRegressor(time_index: Optional[Hashable] = None, p: int = 1, q: int = 0, trend: Optional[str] = 'c', random_seed: Union[int, float] = 0, maxiter: int = 10, use_covariates: bool = True, **kwargs)[source]#
Vector Autoregressive Moving Average with eXogenous regressors model. The two parameters (p, q) are the AR order and the MA order. More information here: https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.varmax.VARMAX.html.
Currently VARMAXRegressor isn’t supported via conda install. It’s recommended that it be installed via PyPI.
- Parameters
time_index (str) – Specifies the name of the column in X that provides the datetime objects. Defaults to None.
p (int) – Maximum Autoregressive order. Defaults to 1.
q (int) – Maximum Moving Average order. Defaults to 0.
trend (str) – Controls the deterministic trend. Options are [‘n’, ‘c’, ‘t’, ‘ct’] where ‘c’ is a constant term, ‘t’ indicates a linear trend, and ‘ct’ is both. Can also be an iterable when defining a polynomial, such as [1, 1, 0, 1].
random_seed (int) – Seed for the random number generator. Defaults to 0.
max_iter (int) – Maximum number of iterations for solver. Defaults to 10.
use_covariates (bool) – If True, will pass exogenous variables in fit/predict methods. If False, forecasts will solely be based off of the datetimes and target values. Defaults to True.
Attributes
hyperparameter_ranges
{ “p”: Integer(1, 10), “q”: Integer(1, 10), “trend”: Categorical([‘n’, ‘c’, ‘t’, ‘ct’]),}
is_multiseries
ModelFamily.VARMAX
model_family
None
modifies_features
True
modifies_target
False
name
VARMAX Regressor
supported_problem_types
[ProblemTypes.TIME_SERIES_REGRESSION]
training_only
False
Methods
Constructs a new component with the same parameters and random state.
Returns the default parameters for this component.
Describe a component and its parameters.
Returns array of 0's with a length of 1 as feature_importance is not defined for VARMAX regressor.
Fits VARMAX regressor to data.
Find the prediction intervals using the fitted VARMAXRegressor.
Loads component at file path.
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.
Returns the parameters which were used to initialize the component.
Make predictions using fitted VARMAX regressor.
Make probability estimates for labels.
Saves component at file path.
Updates the parameter dictionary of the component.
- clone(self)#
Constructs a new component with the same parameters and random state.
- Returns
A new instance of this component with identical parameters and random state.
- default_parameters(cls)#
Returns the default parameters for this component.
Our convention is that Component.default_parameters == Component().parameters.
- Returns
Default parameters for this component.
- Return type
dict
- describe(self, print_name=False, return_dict=False)#
Describe a component and its parameters.
- Parameters
print_name (bool, optional) – whether to print name of component
return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}
- Returns
Returns dictionary if return_dict is True, else None.
- Return type
None or dict
- property feature_importance(self) numpy.ndarray #
Returns array of 0’s with a length of 1 as feature_importance is not defined for VARMAX regressor.
- fit(self, X: pandas.DataFrame, y: Optional[pandas.DataFrame] = None)[source]#
Fits VARMAX regressor to data.
- Parameters
X (pd.DataFrame) – The input training data of shape [n_samples, n_features].
y (pd.DataFrane) – The target training data of shape [n_samples, n_series_id_values].
- Returns
self
- Raises
ValueError – If y was not passed in.
- abstract get_prediction_intervals(self, X: pandas.DataFrame, y: pandas.DataFrame = None, coverage: List[float] = None, predictions: pandas.Series = None) Dict[str, pandas.Series] [source]#
Find the prediction intervals using the fitted VARMAXRegressor.
- Parameters
X (pd.DataFrame) – Data of shape [n_samples, n_features].
y (pd.DataFrame) – Target data of shape [n_samples, n_series_id_values]. Optional.
coverage (list[float]) – A list of floats between the values 0 and 1 that the upper and lower bounds of the prediction interval should be calculated for.
predictions (pd.Series) – Not used for VARMAX regressor.
- Returns
Prediction intervals, keys are in the format {coverage}_lower or {coverage}_upper.
- Return type
dict
- static load(file_path)#
Loads component at file path.
- Parameters
file_path (str) – Location to load file.
- Returns
ComponentBase object
- needs_fitting(self)#
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.
This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
- Returns
True.
- property parameters(self)#
Returns the parameters which were used to initialize the component.
- predict(self, X: pandas.DataFrame, y: Optional[pandas.DataFrame] = None) pandas.Series [source]#
Make predictions using fitted VARMAX regressor.
- Parameters
X (pd.DataFrame) – Data of shape [n_samples, n_features].
y (pd.DataFrame) – Target data of shape [n_samples, n_series_id_values].
- Returns
Predicted values.
- Return type
pd.Series
- Raises
ValueError – If X was passed to fit but not passed in predict.
- predict_proba(self, X: pandas.DataFrame) pandas.Series #
Make probability estimates for labels.
- Parameters
X (pd.DataFrame) – Features.
- Returns
Probability estimates.
- Return type
pd.Series
- Raises
MethodPropertyNotFoundError – If estimator does not have a predict_proba method or a component_obj that implements predict_proba.
- save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#
Saves component at file path.
- Parameters
file_path (str) – Location to save file.
pickle_protocol (int) – The pickle data stream format.
- update_parameters(self, update_dict, reset_fit=True)#
Updates the parameter dictionary of the component.
- Parameters
update_dict (dict) – A dict of parameters to update.
reset_fit (bool, optional) – If True, will set _is_fitted to False.