Source code for evalml.automl.auto_classification_search

# from evalml.pipelines import get_pipelines_by_model_type
from sklearn.model_selection import StratifiedKFold

from .auto_base import AutoBase

from evalml.objectives import ROC, ConfusionMatrix, get_objective
from evalml.problem_types import ProblemTypes


[docs]class AutoClassificationSearch(AutoBase): """Automatic pipeline search class for classification problems"""
[docs] def __init__(self, objective=None, multiclass=False, max_pipelines=None, max_time=None, patience=None, tolerance=None, allowed_model_families=None, cv=None, tuner=None, detect_label_leakage=True, start_iteration_callback=None, add_result_callback=None, additional_objectives=None, random_state=0, n_jobs=-1, verbose=True): """Automated classifier pipeline search Arguments: objective (Object): the objective to optimize multiclass (bool): If True, expecting multiclass data. By default: False. max_pipelines (int): Maximum number of pipelines to search. If max_pipelines and max_time is not set, then max_pipelines will default to max_pipelines of 5. max_time (int, str): Maximum time to search for pipelines. This will not start a new pipeline search after the duration has elapsed. If it is an integer, then the time will be in seconds. For strings, time can be specified as seconds, minutes, or hours. patience (int): Number of iterations without improvement to stop search early. Must be positive. If None, early stopping is disabled. Defaults to None. tolerance (float): Minimum percentage difference to qualify as score improvement for early stopping. Only applicable if patience is not None. Defaults to None. allowed_model_families (list): The model families to search. By default searches over all model families. Run evalml.list_model_families("classification") to see options. cv: cross validation method to use. By default StratifiedKFold tuner: the tuner class to use. Defaults to scikit-optimize tuner detect_label_leakage (bool): If True, check input features for label leakage and warn if found. Defaults to true. start_iteration_callback (callable): function called before each pipeline training iteration. Passed two parameters: pipeline_class, parameters. add_result_callback (callable): function called after each pipeline training iteration. Passed two parameters: results, trained_pipeline. additional_objectives (list): Custom set of objectives to score on. Will override default objectives for problem type if not empty. random_state (int, np.random.RandomState): The random seed/state. Defaults to 0. n_jobs (int or None): Non-negative integer describing level of parallelism used for pipelines. None and 1 are equivalent. If set to -1, all CPUs are used. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. verbose (boolean): If True, turn verbosity on. Defaults to True """ if cv is None: cv = StratifiedKFold(n_splits=3, random_state=random_state, shuffle=True) # set default objective if none provided if objective is None and not multiclass: objective = "precision" problem_type = ProblemTypes.BINARY elif objective is None and multiclass: objective = "precision_micro" problem_type = ProblemTypes.MULTICLASS else: problem_type = self._set_problem_type(objective, multiclass) super().__init__( tuner=tuner, objective=objective, cv=cv, max_pipelines=max_pipelines, max_time=max_time, patience=patience, tolerance=tolerance, allowed_model_families=allowed_model_families, problem_type=problem_type, detect_label_leakage=detect_label_leakage, start_iteration_callback=start_iteration_callback, add_result_callback=add_result_callback, additional_objectives=additional_objectives, random_state=random_state, n_jobs=n_jobs, verbose=verbose ) # hacky, disallows non-numeric metrics from being primary objective if isinstance(self.objective, ConfusionMatrix) or isinstance(self.objective, ROC): raise RuntimeError("Cannot use Confusion Matrix or ROC as the main objective.") # if ROC and ConfusionMatrix not specified as additional objectives, add so we can calculate plots plot_metrics = [ROC(), ConfusionMatrix()] for metric in plot_metrics: if self.problem_type in metric.problem_types: existing_metric = next((obj for obj in self.additional_objectives if obj.name == metric.name), None) if existing_metric is None: self.additional_objectives.append(get_objective(metric))
def _set_problem_type(self, objective, multiclass): """Sets the problem type of the AutoClassificationSearch to either binary or multiclass. If there is an objective either: a. Set problem_type to MULTICLASS if objective is only multiclass and multiclass is false b. Set problem_type to MUTLICLASS if multiclass is true c. Default to BINARY Arguments: objective (Object): the objective to optimize multiclass (bool): boolean representing whether search is for multiclass problems or not Returns: ProblemTypes enum representing type of problem to set AutoClassificationSearch to """ problem_type = ProblemTypes.BINARY # if exclusively multiclass: infer if [ProblemTypes.MULTICLASS] == get_objective(objective).problem_types: problem_type = ProblemTypes.MULTICLASS elif multiclass: problem_type = ProblemTypes.MULTICLASS return problem_type