import numpy as np
from sklearn import metrics
from sklearn.preprocessing import label_binarize
from .binary_classification_objective import BinaryClassificationObjective
from .multiclass_classification_objective import (
MulticlassClassificationObjective
)
from .regression_objective import RegressionObjective
from evalml.exceptions import DimensionMismatchError
[docs]class AccuracyBinary(BinaryClassificationObjective):
"""Accuracy score for binary classification"""
name = "Accuracy Binary"
greater_is_better = True
score_needs_proba = False
[docs] def objective_function(self, y_true, y_predicted, X=None):
if len(y_true) == 0 or len(y_predicted) == 0:
raise ValueError("Length of inputs is 0")
if len(y_predicted) != len(y_true):
raise DimensionMismatchError("Inputs have mismatched dimensions: y_predicted has shape {}, y_true has shape {}".format(len(y_predicted), len(y_true)))
return metrics.accuracy_score(y_true, y_predicted)
[docs]class AccuracyMulticlass(MulticlassClassificationObjective):
"""Accuracy score for multiclass classification"""
name = "Accuracy Multiclass"
greater_is_better = True
score_needs_proba = False
[docs] def objective_function(self, y_true, y_predicted, X=None):
if len(y_true) == 0 or len(y_predicted) == 0:
raise ValueError("Length of inputs is 0")
if len(y_predicted) != len(y_true):
raise DimensionMismatchError("Inputs have mismatched dimensions: y_predicted has shape {}, y_true has shape {}".format(len(y_predicted), len(y_true)))
return metrics.accuracy_score(y_true, y_predicted)
[docs]class BalancedAccuracyBinary(BinaryClassificationObjective):
"""Balanced accuracy score for binary classification"""
name = "Balanced Accuracy Binary"
greater_is_better = True
score_needs_proba = False
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.balanced_accuracy_score(y_true, y_predicted)
[docs]class BalancedAccuracyMulticlass(MulticlassClassificationObjective):
"""Balanced accuracy score for multiclass classification"""
name = "Balanced Accuracy Multiclass"
greater_is_better = True
score_needs_proba = False
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.balanced_accuracy_score(y_true, y_predicted)
[docs]class F1(BinaryClassificationObjective):
"""F1 score for binary classification"""
name = "F1"
greater_is_better = True
score_needs_proba = False
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.f1_score(y_true, y_predicted, zero_division=0.0)
[docs]class F1Micro(MulticlassClassificationObjective):
"""F1 score for multiclass classification using micro averaging"""
name = "F1 Micro"
greater_is_better = True
score_needs_proba = False
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.f1_score(y_true, y_predicted, average='micro', zero_division=0.0)
[docs]class F1Macro(MulticlassClassificationObjective):
"""F1 score for multiclass classification using macro averaging"""
name = "F1 Macro"
greater_is_better = True
score_needs_proba = False
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.f1_score(y_true, y_predicted, average='macro', zero_division=0.0)
[docs]class F1Weighted(MulticlassClassificationObjective):
"""F1 score for multiclass classification using weighted averaging"""
name = "F1 Weighted"
greater_is_better = True
score_needs_proba = False
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.f1_score(y_true, y_predicted, average='weighted', zero_division=0.0)
[docs]class Precision(BinaryClassificationObjective):
"""Precision score for binary classification"""
name = "Precision"
greater_is_better = True
score_needs_proba = False
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.precision_score(y_true, y_predicted, zero_division=0.0)
[docs]class PrecisionMicro(MulticlassClassificationObjective):
"""Precision score for multiclass classification using micro averaging"""
name = "Precision Micro"
greater_is_better = True
score_needs_proba = False
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.precision_score(y_true, y_predicted, average='micro', zero_division=0.0)
[docs]class PrecisionMacro(MulticlassClassificationObjective):
"""Precision score for multiclass classification using macro averaging"""
name = "Precision Macro"
greater_is_better = True
score_needs_proba = False
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.precision_score(y_true, y_predicted, average='macro', zero_division=0.0)
[docs]class PrecisionWeighted(MulticlassClassificationObjective):
"""Precision score for multiclass classification using weighted averaging"""
name = "Precision Weighted"
greater_is_better = True
score_needs_proba = False
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.precision_score(y_true, y_predicted, average='weighted', zero_division=0.0)
[docs]class Recall(BinaryClassificationObjective):
"""Recall score for binary classification"""
name = "Recall"
greater_is_better = True
score_needs_proba = False
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.recall_score(y_true, y_predicted, zero_division=0.0)
[docs]class RecallMicro(MulticlassClassificationObjective):
"""Recall score for multiclass classification using micro averaging"""
name = "Recall Micro"
greater_is_better = True
score_needs_proba = False
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.recall_score(y_true, y_predicted, average='micro', zero_division=0.0)
[docs]class RecallMacro(MulticlassClassificationObjective):
"""Recall score for multiclass classification using macro averaging"""
name = "Recall Macro"
greater_is_better = True
score_needs_proba = False
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.recall_score(y_true, y_predicted, average='macro', zero_division=0.0)
[docs]class RecallWeighted(MulticlassClassificationObjective):
"""Recall score for multiclass classification using weighted averaging"""
name = "Recall Weighted"
greater_is_better = True
score_needs_proba = False
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.recall_score(y_true, y_predicted, average='weighted', zero_division=0.0)
[docs]class AUC(BinaryClassificationObjective):
"""AUC score for binary classification"""
name = "AUC"
greater_is_better = True
score_needs_proba = True
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.roc_auc_score(y_true, y_predicted)
[docs]class AUCMicro(MulticlassClassificationObjective):
"""AUC score for multiclass classification using micro averaging"""
name = "AUC Micro"
greater_is_better = True
score_needs_proba = True
[docs] def objective_function(self, y_true, y_predicted, X=None):
y_true, y_predicted = _handle_predictions(y_true, y_predicted)
return metrics.roc_auc_score(y_true, y_predicted, average='micro')
[docs]class AUCMacro(MulticlassClassificationObjective):
"""AUC score for multiclass classification using macro averaging"""
name = "AUC Macro"
greater_is_better = True
score_needs_proba = True
[docs] def objective_function(self, y_true, y_predicted, X=None):
y_true, y_predicted = _handle_predictions(y_true, y_predicted)
return metrics.roc_auc_score(y_true, y_predicted, average='macro')
[docs]class AUCWeighted(MulticlassClassificationObjective):
"""AUC Score for multiclass classification using weighted averaging"""
name = "AUC Weighted"
greater_is_better = True
score_needs_proba = True
[docs] def objective_function(self, y_true, y_predicted, X=None):
y_true, y_predicted = _handle_predictions(y_true, y_predicted)
return metrics.roc_auc_score(y_true, y_predicted, average='weighted')
[docs]class LogLossBinary(BinaryClassificationObjective):
"""Log Loss for binary classification"""
name = "Log Loss Binary"
greater_is_better = False
score_needs_proba = True
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.log_loss(y_true, y_predicted)
[docs]class LogLossMulticlass(MulticlassClassificationObjective):
"""Log Loss for multiclass classification"""
name = "Log Loss Multiclass"
greater_is_better = False
score_needs_proba = True
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.log_loss(y_true, y_predicted)
[docs]class MCCBinary(BinaryClassificationObjective):
"""Matthews correlation coefficient for binary classification"""
name = "MCC Binary"
greater_is_better = True
score_needs_proba = False
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.matthews_corrcoef(y_true, y_predicted)
[docs]class MCCMulticlass(MulticlassClassificationObjective):
"""Matthews correlation coefficient for multiclass classification"""
name = "MCC Multiclass"
greater_is_better = True
score_needs_proba = False
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.matthews_corrcoef(y_true, y_predicted)
[docs]class R2(RegressionObjective):
"""Coefficient of determination for regression"""
name = "R2"
greater_is_better = True
score_needs_proba = False
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.r2_score(y_true, y_predicted)
[docs]class MAE(RegressionObjective):
"""Mean absolute error for regression"""
name = "MAE"
greater_is_better = False
score_needs_proba = False
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.mean_absolute_error(y_true, y_predicted)
[docs]class MSE(RegressionObjective):
"""Mean squared error for regression"""
name = "MSE"
greater_is_better = False
score_needs_proba = False
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.mean_squared_error(y_true, y_predicted)
[docs]class MaxError(RegressionObjective):
"""Maximum residual error for regression"""
name = "MaxError"
greater_is_better = False
score_needs_proba = False
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.max_error(y_true, y_predicted)
[docs]class ExpVariance(RegressionObjective):
"""Explained variance score for regression"""
name = "ExpVariance"
greater_is_better = True
score_needs_proba = False
[docs] def objective_function(self, y_true, y_predicted, X=None):
return metrics.explained_variance_score(y_true, y_predicted)
def _handle_predictions(y_true, y_pred):
if len(np.unique(y_true)) > 2:
classes = np.unique(y_true)
y_true = label_binarize(y_true, classes=classes)
return y_true, y_pred