from collections import OrderedDict
import pandas as pd
from evalml.objectives import get_objective
from evalml.pipelines.classification_pipeline import ClassificationPipeline
from evalml.problem_types import ProblemTypes
[docs]class MulticlassClassificationPipeline(ClassificationPipeline):
"""Pipeline subclass for all multiclass classification pipelines."""
problem_type = ProblemTypes.MULTICLASS
[docs] def score(self, X, y, objectives):
"""Evaluate model performance on current and additional objectives
Arguments:
X (pd.DataFrame or np.array) : data of shape [n_samples, n_features]
y (pd.Series) : true labels of length [n_samples]
objectives (list): list of objectives to score
Returns:
dict: ordered dictionary of objective scores
"""
if not isinstance(X, pd.DataFrame):
X = pd.DataFrame(X)
if not isinstance(y, pd.Series):
y = pd.Series(y)
objectives = [get_objective(o) for o in objectives]
y_predicted = None
y_predicted_proba = None
scores = OrderedDict()
for objective in objectives:
if objective.score_needs_proba:
if y_predicted_proba is None:
y_predicted_proba = self.predict_proba(X)
scores.update({objective.name: objective.score(y, y_predicted_proba, X=X)})
else:
if y_predicted is None:
y_predicted = self.predict(X)
scores.update({objective.name: objective.score(y, y_predicted, X=X)})
return scores