evalml.pipelines.RFRegressionPipeline¶
-
class
evalml.pipelines.
RFRegressionPipeline
(parameters, random_state=0)[source]¶ Random Forest Pipeline for regression problems
-
name
= 'Random Forest Regression Pipeline'¶
-
custom_name
= 'Random Forest Regression Pipeline'¶
-
summary
= 'Random Forest Regressor w/ One Hot Encoder + Simple Imputer + RF Regressor Select From Model'¶
-
component_graph
= ['One Hot Encoder', 'Simple Imputer', 'RF Regressor Select From Model', 'Random Forest Regressor']¶
-
problem_type
= 'regression'¶
-
model_family
= 'random_forest'¶
-
hyperparameters
= {'impute_strategy': ['mean', 'median', 'most_frequent'], 'max_depth': Integer(low=1, high=32, prior='uniform', transform='identity'), 'n_estimators': Integer(low=10, high=1000, prior='uniform', transform='identity'), 'percent_features': Real(low=0.01, high=1, prior='uniform', transform='identity'), 'threshold': ['mean', -inf]}¶
-
custom_hyperparameters
= None¶
Instance attributes
feature_importances
Return feature importances.
parameters
Returns parameter dictionary for this pipeline
Methods:
Machine learning pipeline made out of transformers and a estimator.
Outputs pipeline details including component parameters
Build a model
Returns component by name
Generate an image representing the pipeline graph
Generate a bar graph of the pipeline’s feature importances
Loads pipeline at file path
Make predictions using selected features.
Saves pipeline at file path
Evaluate model performance on current and additional objectives
-