evalml.pipelines.components.XGBoostRegressor¶
-
class
evalml.pipelines.components.
XGBoostRegressor
(eta=0.1, max_depth=3, min_child_weight=1, n_estimators=100, random_state=0)[source]¶ XGBoost Regressor
-
name
= 'XGBoost Regressor'¶
-
model_family
= 'xgboost'¶
-
supported_problem_types
= [<ProblemTypes.REGRESSION: 'regression'>]¶
-
hyperparameter_ranges
= {'eta': Real(low=0, high=1, prior='uniform', transform='identity'), 'max_depth': Integer(low=1, high=20, prior='uniform', transform='identity'), 'min_child_weight': Real(low=1, high=10, prior='uniform', transform='identity'), 'n_estimators': Integer(low=1, high=1000, prior='uniform', transform='identity')}¶
Instance attributes
SEED_MAX
SEED_MIN
feature_importances
Returns feature importances.
Methods:
Initialize self.
Describe a component and its parameters
Fits component to data
Make predictions using selected features.
Make probability estimates for labels.
-