evalml.pipelines.MeanBaselineRegressionPipeline¶
-
class
evalml.pipelines.
MeanBaselineRegressionPipeline
(parameters, random_seed=0)[source]¶ Baseline Pipeline for regression problems.
-
name
= 'Mean Baseline Regression Pipeline'¶
-
custom_name
= None¶
-
summary
= 'Baseline Regressor'¶
-
component_graph
= ['Baseline Regressor']¶
-
problem_type
= 'regression'¶
-
model_family
= 'baseline'¶
-
hyperparameters
= {'Baseline Regressor': {}}¶
-
custom_hyperparameters
= {'strategy': ['mean']}¶
-
default_parameters
= {'Baseline Regressor': {'strategy': 'mean'}}¶
Instance attributes
feature_importance
Return importance associated with each feature.
linearized_component_graph
parameters
Returns parameter dictionary for this pipeline
Methods:
Machine learning pipeline made out of transformers and a estimator.
Determine whether the threshold of a binary classification pipeline can be tuned.
Constructs a new pipeline with the same components, parameters, and random state.
Transforms the data by applying all pre-processing components.
Outputs pipeline details including component parameters
Build a regression model.
Returns component by name
Generate an image representing the pipeline graph
Generate a bar graph of the pipeline’s feature importance
Loads pipeline at file path
Make predictions using selected features.
Saves pipeline at file path
Evaluate model performance on current and additional objectives
-