evalml.preprocessing.KMeansSMOTECVSplit

class evalml.preprocessing.KMeansSMOTECVSplit(sampling_strategy='auto', k_neighbors=2, n_splits=3, shuffle=True, random_seed=0, **kwargs)[source]

Splits the data into KFold cross validation sets and balances the training data using K-Means SMOTE. Keeps the validation data the same. Works only on continuous, numeric data.

Methods

__init__

Create a TV or CV data splitter instance

get_n_splits

Returns the number of splits of this object.

split

Splits and returns the sampled training data using the data sampler provided.

transform_sample

Transforms the input data with the balancing strategy.

Class Inheritance

Inheritance diagram of KMeansSMOTECVSplit