evalml.pipelines.components.ElasticNetClassifier¶
-
class
evalml.pipelines.components.
ElasticNetClassifier
(alpha=0.5, l1_ratio=0.5, n_jobs=- 1, max_iter=1000, random_seed=0, penalty='elasticnet', **kwargs)[source]¶ Elastic Net Classifier.
-
name
= 'Elastic Net Classifier'¶
-
model_family
= 'linear_model'¶
-
supported_problem_types
= [<ProblemTypes.BINARY: 'binary'>, <ProblemTypes.MULTICLASS: 'multiclass'>, <ProblemTypes.TIME_SERIES_BINARY: 'time series binary'>, <ProblemTypes.TIME_SERIES_MULTICLASS: 'time series multiclass'>]¶
-
hyperparameter_ranges
= {'alpha': Real(low=0, high=1, prior='uniform', transform='identity'), 'l1_ratio': Real(low=0, high=1, prior='uniform', transform='identity')}¶
-
default_parameters
= {'alpha': 0.5, 'l1_ratio': 0.5, 'loss': 'log', 'max_iter': 1000, 'n_jobs': -1, 'penalty': 'elasticnet'}¶
-
predict_uses_y
= False¶
Instance attributes
feature_importance
Return an attribute of instance, which is of type owner.
needs_fitting
parameters
Returns the parameters which were used to initialize the component
Methods:
Initialize self.
Constructs a new component with the same parameters and random state.
Describe a component and its parameters
Fits component to data
Loads component at file path
Make predictions using selected features.
Make probability estimates for labels.
Saves component at file path
-