from evalml.pipelines import PipelineBase
from evalml.problem_types import ProblemTypes
[docs]class XGBoostPipeline(PipelineBase):
"""XGBoost Pipeline for both binary and multiclass classification"""
_name = "XGBoost Classification Pipeline"
component_graph = ['One Hot Encoder', 'Simple Imputer', 'RF Classifier Select From Model', 'XGBoost Classifier']
supported_problem_types = [ProblemTypes.BINARY, ProblemTypes.MULTICLASS]
[docs] def __init__(self, parameters, objective, random_state=0):
super().__init__(parameters=parameters,
objective=objective,
random_state=random_state)