evalml.pipelines.XGBoostPipeline¶
-
class
evalml.pipelines.
XGBoostPipeline
(parameters, objective, random_state=0)[source]¶ XGBoost Pipeline for both binary and multiclass classification
-
name
= 'XGBoost Classification Pipeline'¶
-
summary
= 'XGBoost Classifier w/ One Hot Encoder + Simple Imputer + RF Classifier Select From Model'¶
-
component_graph
= ['One Hot Encoder', 'Simple Imputer', 'RF Classifier Select From Model', <evalml.pipelines.components.estimators.classifiers.xgboost_classifier.XGBoostClassifier object>]¶
-
supported_problem_types
= [<ProblemTypes.BINARY: 'binary'>, <ProblemTypes.MULTICLASS: 'multiclass'>]¶
-
model_family
= 'xgboost'¶
-
hyperparameters
= {'eta': Real(low=0, high=1, prior='uniform', transform='identity'), 'impute_strategy': ['mean', 'median', 'most_frequent'], 'max_depth': Integer(low=1, high=20, prior='uniform', transform='identity'), 'min_child_weight': Real(low=1, high=10, prior='uniform', transform='identity'), 'n_estimators': Integer(low=1, high=1000, prior='uniform', transform='identity'), 'percent_features': Real(low=0.01, high=1, prior='uniform', transform='identity'), 'threshold': ['mean', -inf]}¶
-
custom_hyperparameters
= None¶
Instance attributes
feature_importances
Return feature importances.
parameters
Returns parameter dictionary for this pipeline
Methods:
Machine learning pipeline made out of transformers and a estimator.
Outputs pipeline details including component parameters
Generate a bar graph of the pipeline’s feature importances
Build a model
Returns component by name
Generate an image representing the pipeline graph
Loads pipeline at file path
Make predictions using selected features.
Make probability estimates for labels.
Saves pipeline at file path
Evaluate model performance on current and additional objectives
-