evalml.pipelines.CatBoostRegressionPipeline

class evalml.pipelines.CatBoostRegressionPipeline(parameters, objective, random_state=0)[source]

CatBoost Pipeline for regression problems. CatBoost is an open-source library and natively supports categorical features.

For more information, check out https://catboost.ai/

Note: impute_strategy must support both string and numeric data

name = 'Cat Boost Regression Pipeline'
summary = 'CatBoost Regressor w/ Simple Imputer'
component_graph = ['Simple Imputer', <evalml.pipelines.components.estimators.regressors.catboost_regressor.CatBoostRegressor object>]
supported_problem_types = ['regression']
model_family = 'catboost'
hyperparameters = {'eta': Real(low=0, high=1, prior='uniform', transform='identity'), 'impute_strategy': ['most_frequent'], 'max_depth': Integer(low=1, high=16, prior='uniform', transform='identity'), 'n_estimators': Integer(low=10, high=1000, prior='uniform', transform='identity')}
custom_hyperparameters = {'impute_strategy': ['most_frequent']}

Instance attributes

feature_importances

Return feature importances.

parameters

Returns parameter dictionary for this pipeline

Methods:

__init__

Machine learning pipeline made out of transformers and a estimator.

describe

Outputs pipeline details including component parameters

feature_importance_graph

Generate a bar graph of the pipeline’s feature importances

fit

Build a model

get_component

Returns component by name

graph

Generate an image representing the pipeline graph

load

Loads pipeline at file path

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves pipeline at file path

score

Evaluate model performance on current and additional objectives