evalml.pipelines.LogisticRegressionPipeline

class evalml.pipelines.LogisticRegressionPipeline(parameters, objective, random_state=0)[source]

Logistic Regression Pipeline for both binary and multiclass classification

name = 'Logistic Regression Pipeline'
summary = 'Logistic Regression Classifier w/ One Hot Encoder + Simple Imputer + Standard Scaler'
component_graph = ['One Hot Encoder', 'Simple Imputer', 'Standard Scaler', <evalml.pipelines.components.estimators.classifiers.logistic_regression.LogisticRegressionClassifier object>]
supported_problem_types = ['binary', 'multiclass']
model_family = 'linear_model'
hyperparameters = {'C': Real(low=0.01, high=10, prior='uniform', transform='identity'), 'impute_strategy': ['mean', 'median', 'most_frequent'], 'penalty': ['l2']}
custom_hyperparameters = None

Instance attributes

feature_importances

Return feature importances.

parameters

Returns parameter dictionary for this pipeline

Methods:

__init__

Machine learning pipeline made out of transformers and a estimator.

describe

Outputs pipeline details including component parameters

feature_importance_graph

Generate a bar graph of the pipeline’s feature importances

fit

Build a model

get_component

Returns component by name

graph

Generate an image representing the pipeline graph

load

Loads pipeline at file path

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves pipeline at file path

score

Evaluate model performance on current and additional objectives