evalml.pipelines.LinearRegressionPipeline

class evalml.pipelines.LinearRegressionPipeline(parameters, objective, random_state=0)[source]

Linear Regression Pipeline for regression problems

name = 'Linear Regression Pipeline'
summary = 'Linear Regressor w/ One Hot Encoder + Simple Imputer + Standard Scaler'
component_graph = ['One Hot Encoder', 'Simple Imputer', 'Standard Scaler', <evalml.pipelines.components.estimators.regressors.linear_regressor.LinearRegressor object>]
supported_problem_types = ['regression']
model_family = 'linear_model'
hyperparameters = {'fit_intercept': [True, False], 'impute_strategy': ['mean', 'median', 'most_frequent'], 'normalize': [True, False]}
custom_hyperparameters = None

Instance attributes

feature_importances

Return feature importances.

parameters

Returns parameter dictionary for this pipeline

Methods:

__init__

Machine learning pipeline made out of transformers and a estimator.

describe

Outputs pipeline details including component parameters

feature_importance_graph

Generate a bar graph of the pipeline’s feature importances

fit

Build a model

get_component

Returns component by name

graph

Generate an image representing the pipeline graph

load

Loads pipeline at file path

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.

save

Saves pipeline at file path

score

Evaluate model performance on current and additional objectives