Source code for evalml.pipelines.components.estimators.classifiers.xgboost_classifier

from skopt.space import Integer, Real

from evalml.model_family import ModelFamily
from evalml.pipelines.components.estimators import Estimator
from evalml.problem_types import ProblemTypes
from evalml.utils import SEED_BOUNDS, get_random_seed, import_or_raise


[docs]class XGBoostClassifier(Estimator): """XGBoost Classifier""" name = "XGBoost Classifier" hyperparameter_ranges = { "eta": Real(0, 1), "max_depth": Integer(1, 20), "min_child_weight": Real(1, 10), "n_estimators": Integer(1, 1000), } model_family = ModelFamily.XGBOOST supported_problem_types = [ProblemTypes.BINARY, ProblemTypes.MULTICLASS]
[docs] def __init__(self, eta=0.1, max_depth=3, min_child_weight=1, n_estimators=100, random_state=0): random_seed = get_random_seed(random_state, SEED_BOUNDS.min_bound, SEED_BOUNDS.max_bound) parameters = {"eta": eta, "max_depth": max_depth, "min_child_weight": min_child_weight, "n_estimators": n_estimators} xgb_error_msg = "XGBoost is not installed. Please install using `pip install xgboost.`" xgb = import_or_raise("xgboost", error_msg=xgb_error_msg) xgb_classifier = xgb.XGBClassifier(random_state=random_seed, eta=eta, max_depth=max_depth, n_estimators=n_estimators, min_child_weight=min_child_weight) super().__init__(parameters=parameters, component_obj=xgb_classifier, random_state=random_state)
@property def feature_importances(self): return self._component_obj.feature_importances_