evalml.pipelines.components.XGBoostClassifier

class evalml.pipelines.components.XGBoostClassifier(eta=0.1, max_depth=3, min_child_weight=1, n_estimators=100, random_state=0)[source]

XGBoost Classifier

name = 'XGBoost Classifier'
model_family = 'xgboost'
supported_problem_types = [<ProblemTypes.BINARY: 'binary'>, <ProblemTypes.MULTICLASS: 'multiclass'>]
hyperparameter_ranges = {'eta': Real(low=0, high=1, prior='uniform', transform='identity'), 'max_depth': Integer(low=1, high=20, prior='uniform', transform='identity'), 'min_child_weight': Real(low=1, high=10, prior='uniform', transform='identity'), 'n_estimators': Integer(low=1, high=1000, prior='uniform', transform='identity')}

Instance attributes

feature_importances

Returns feature importances.

Methods:

__init__

Initialize self.

describe

Describe a component and its parameters

fit

Fits component to data

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.