evalml.pipelines.components.XGBoostClassifier¶
-
class
evalml.pipelines.components.
XGBoostClassifier
(eta=0.1, max_depth=3, min_child_weight=1, n_estimators=100, random_state=0)[source]¶ XGBoost Classifier
-
name
= 'XGBoost Classifier'¶
-
model_family
= 'xgboost'¶
-
supported_problem_types
= [<ProblemTypes.BINARY: 'binary'>, <ProblemTypes.MULTICLASS: 'multiclass'>]¶
-
hyperparameter_ranges
= {'eta': Real(low=0, high=1, prior='uniform', transform='identity'), 'max_depth': Integer(low=1, high=20, prior='uniform', transform='identity'), 'min_child_weight': Real(low=1, high=10, prior='uniform', transform='identity'), 'n_estimators': Integer(low=1, high=1000, prior='uniform', transform='identity')}¶
Instance attributes
feature_importances
Returns feature importances.
Methods:
Initialize self.
Describe a component and its parameters
Fits component to data
Make predictions using selected features.
Make probability estimates for labels.
-